等差數(shù)列的公差為1,且a1+a2+a3+…+a99=99,則a3+a6+…+a99的值為(  )
A、0B、33C、66D、99
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:S=a1+a4+…+a97,則a2+a5+…+a98=S+33,a3+a6+…+a99=S+33+33=S+66,代入已知式子可得S,可得答案.
解答: 解:設(shè)S=a1+a4+…+a97,則a2+a5+…+a98=S+33,
a3+a6+…+a99=S+33+33=S+66,
∴a1+a2+a3+…+a99=S+(S+33)+(S+66)=99,
解得S=0,∴a3+a6+…+a99=66,
故選:C
點(diǎn)評(píng):本題考查等差數(shù)列的前n項(xiàng)和,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在R上定義運(yùn)算⊙:a⊙b=-a+b2,則不等式x⊙(x-2)<0的解集為( 。
A、(0,2)
B、(1,4)
C、(-∞,-2)∪(1,+∞)
D、(-1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)的定義域?yàn)镽,對(duì)任意x∈R,有f(x+2)=f(x+1)-f(x),且f(1)=lg3-lg2,f(2)=lg3+lg5,則f(2013)的值為( 。
A、-1
B、1
C、lg
2
3
D、lg
1
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,若存在非零整數(shù)T,使得am+T=am對(duì)于任意的m∈N*均成立,那么稱數(shù)列{an}為周期數(shù)列,其中T叫數(shù)列的周期.若數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2且n∈N),且x1=2,x2=a(a∈R,a≠0),當(dāng)數(shù)列{xn}的正周期最小時(shí),該數(shù)列的前2012項(xiàng)的和是( 。
A、1344B、2684
C、1342D、2688

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ax2-2ax+2+b(a≠0)在閉區(qū)間[2,3]上有最大值5,最小值2,則a,b的值為( 。
A、a=1,b=0
B、a=1,b=0或a=-1,b=3
C、a=-1,b=3
D、以上答案均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b,c均為正數(shù),且2a=log0.5a,(
1
2
)b=log0.5b
,(
1
2
c=log2c,則( 。
A、a<b<c
B、c<b<a
C、c<a<b
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+mx+3的有兩個(gè)零點(diǎn)x1,x2(x1≠x2),試問(wèn):
(1)m為何值時(shí),該函數(shù)一個(gè)零點(diǎn)大于1,一個(gè)零點(diǎn)小于1
(2)m為何值時(shí),該函數(shù)兩個(gè)零點(diǎn)均滿足x1∈(-3,-1),x2∈(-3,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種產(chǎn)品的廣告費(fèi)支出x與銷(xiāo)售額y(單位:百萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):
x24568
y3040605070
(1)畫(huà)出散點(diǎn)圖;
(2)求回歸直線方程;
(3)試預(yù)測(cè)廣告費(fèi)支出為10百萬(wàn)元時(shí),銷(xiāo)售額多大?
參考公式:b=
n
i-1
(x1-
.
x)
(y1-
.
y)
n
i-1
(x1-
.
x
)2
=
n
i-1
xiyi-n
.
x
.
y
n
i-1
x12-n
-2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+b的圖象如圖所示.
(1)求a與b的值;
(2)求x∈[2,4]的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案