12.已知扇形的半徑是2,面積為8,則此扇形的圓心角的弧度數(shù)是4.

分析 扇形的圓心角的弧度數(shù)為α,半徑為r,弧長為l,面積為s,由面積公式和弧長公式可得到關(guān)于l和r的方程,進而得到答案.

解答 解:由扇形的面積公式得:S=$\frac{1}{2}$lR,
因為扇形的半徑長為2cm,面積為8cm2
所以扇形的弧長l=8.
設(shè)扇形的圓心角的弧度數(shù)為α,
由扇形的弧長公式得:l=|α|R,且R=2
所以扇形的圓心角的弧度數(shù)是4.
故答案為4.

點評 本題考查弧度的定義、扇形的面積公式,是基本運算的考查,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.向量$\overrightarrow{a}$=(4,-3),則與$\overrightarrow{a}$同向的單位向量$\overrightarrow{{a}_{0}}$=($\frac{4}{5}$,-$\frac{3}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示,其中俯視圖是個半圓,則該幾何體的側(cè)面積為( 。
A.$\frac{3}{2}π$B.$\frac{3}{2}π+\sqrt{3}$C.$π+\sqrt{3}$D.$\frac{5}{2}π+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若動點P到點$F({0,-\frac{1}{4}})$的距離比它到直線$y=\frac{5}{4}$的距離小1.
(1)求點P的軌跡E的方程;
(2)若直線y=mx-4與軌跡E交于A、B兩點,且$|AB|=3\sqrt{6}$.求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.關(guān)于下列幾何體,說法正確的是(  )
A.圖①是圓柱B.圖②和圖③是圓錐C.圖④和圖⑤是圓臺D.圖⑤是圓臺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列四個命題:
①命題“?x>0,x2-x≤0”的否定是“?x≤0,x2-x>0
②已知數(shù)列{an},則“an,an+1,an+2成等比數(shù)列”是“an+12=anan+2”的充要條件
③“若xy≠0,則x2+y2≠0”的逆命題
④若p∧q為假命題,則p,q均為假命題
其中假命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知$f(x)=-\sqrt{4+\frac{1}{x^2}}$,數(shù)列{an}的前n項和為Sn,點${P_n}({a_n},-\frac{1}{{{a_{n+1}}}})$,在曲線y=f(x)上(n∈N*),且a1=1,an>0.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}的前n項和為Tn,且滿足$\frac{{{T_{n+1}}}}{a_n^2}=\frac{T_n}{{a_{n+1}^2}}+16{n^2}-8n-3$,求出b1的值,使得數(shù)列{bn}是等差數(shù)列;(3)求證:${S_n}>\frac{1}{2}(\sqrt{4n+1}-1),n∈{N^*}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.下列命題中:
①△ABC中,A>B?sinA>sinB
②數(shù)列{an}的前n項和Sn=n2-2n-1,則數(shù)列{an}是等差數(shù)列.
③銳角三角形的三邊長分別為3,7,a,則a的取值范圍是2$\sqrt{10}$$<a<\sqrt{58}$.
④若Sn=2-an,則{an}是等比數(shù)列
真命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x}+4,}&{x<-1}\\{a{x^2}+4x,}&{x≥-1}\end{array}}\right.$(a∈R).
(Ⅰ)若a=1,解不等式f(x)<12;
(Ⅱ)若總存在x0∈[-1,1],使得f(x0)=3-a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案