分析 (Ⅰ)原不等式可化為$\left\{{\begin{array}{l}{x<-1}\\{{{(\frac{1}{2})}^x}+4<12}\end{array}}\right.$或 $\left\{{\begin{array}{l}{x≥-1}\\{{x^2}+4x<12}\end{array}}\right.$,解出即可得出.
(Ⅱ)總存在x0∈[-1,1],使得f(x0)=3-a成立,即函數(shù)g(x)=ax2+4x+a-3在[-1,1]上有零點.(1)當(dāng)g(-1)g(1)≤0時,g(x)在[-1,1]上總有零點,(2)當(dāng)g(-1)g(1)>0時,分為以下兩種其中情況$\left\{{\begin{array}{l}{g(-1)>0}\\{g(1)>0}\\{△≥0}\\{-1<-\frac{4}{2a}<1}\end{array}}\right.$或 $\left\{{\begin{array}{l}{g(-1)<0}\\{g(1)<0}\\{△≥0}\\{-1<-\frac{4}{2a}<1}\end{array}}\right.$,解出即可得出.
解答 解:(Ⅰ)原不等式可化為$\left\{{\begin{array}{l}{x<-1}\\{{{(\frac{1}{2})}^x}+4<12}\end{array}}\right.$或 $\left\{{\begin{array}{l}{x≥-1}\\{{x^2}+4x<12}\end{array}}\right.$,
解得-3<x<-1或-1≤x<2,
所以原不等式的解集是{x|-3<x<2}.
(Ⅱ)總存在x0∈[-1,1],使得f(x0)=3-a成立,即函數(shù)g(x)=ax2+4x+a-3在[-1,1]上有零點.
(1)當(dāng)g(-1)g(1)≤0時,g(x)在[-1,1]上總有零點,
所以(2a-7)(2a+1)≤0,即$-\frac{1}{2}≤a≤\frac{7}{2}$,
(2)當(dāng)g(-1)g(1)>0時,分為以下兩種其中情況$\left\{{\begin{array}{l}{g(-1)>0}\\{g(1)>0}\\{△≥0}\\{-1<-\frac{4}{2a}<1}\end{array}}\right.$或 $\left\{{\begin{array}{l}{g(-1)<0}\\{g(1)<0}\\{△≥0}\\{-1<-\frac{4}{2a}<1}\end{array}}\right.$,
解得$\frac{7}{2}<a≤4$或∅.
綜上,實數(shù)a的取值范圍是$[-\frac{1}{2},4]$.
點評 本題考查了二次函數(shù)的單調(diào)性、不等式的解法,考查了分類討論方法、推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 1 | C. | $\frac{5}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i>2014 | B. | i>2014 | C. | i>2015 | D. | i>2017 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2,-1,0,1} | B. | {-1,0,1,2} | C. | {-2,-1,1} | D. | {-2,-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com