16.已知直線l:2x-y-2=0和直線l:x+2y-1=0關(guān)于直線l對稱,則直線l的斜率為$\frac{1}{3}$或-3.

分析 設(shè)P(a,b)是直線l上任意一點(diǎn),
則點(diǎn)P到直線l:2x-y-2=0和直線l:x+2y-1=0的距離相等.
$\frac{|2a-b-2|}{\sqrt{5}}=\frac{|a+2b-1|}{\sqrt{5}}$,整理得a-3b-1=0或3a+b-3=0,即可求解.

解答 解:設(shè)P(a,b)是直線l上任意一點(diǎn),
則點(diǎn)P到直線l:2x-y-2=0和直線l:x+2y-1=0的距離相等.
$\frac{|2a-b-2|}{\sqrt{5}}=\frac{|a+2b-1|}{\sqrt{5}}$
整理得a-3b-1=0或3a+b-3=0,
∴直線l的斜率為$\frac{1}{3}$或-3.
故答案為:$\frac{1}{3}$或-3

點(diǎn)評 本題考查了線關(guān)于線的對稱問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)y=sin(ωx+φ)(ω>0,0<φ≤$\frac{π}{2}$)的部分圖象如圖所示,則cos(5ωφ)等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=2\sqrt{3}+2sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)P的極坐標(biāo)為(2$\sqrt{3}$,$\frac{2π}{3}$).
(Ⅰ)求直線l以及曲線C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C交于A,B兩點(diǎn),求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|2x+1|-|x-2|,不等式f(x)≤2的解集為M.
(1)求M;
(2)記集合M的最大元素為m,若正數(shù)a,b,c滿足a2+3b2+2c2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=|x+1|+|x+a|的最小值為3,則實(shí)數(shù)a的值為( 。
A.A、B.2C.2或-4D.4或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=|2x-1|-|ax+2|,.
(Ⅰ)當(dāng)a=1時,求不等式f(x)>0的解集;
(Ⅱ)當(dāng)a=2時,若?x0∈R,使f(x0)<4m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓M過點(diǎn)A(1,3),B(4,2),且圓心在直線y=x-3上.
(Ⅰ)求圓M的方程;
(Ⅱ)若過點(diǎn)(-4,1)的直線l與圓M相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,有一邊長為6的正方形鐵片,在鐵片的四角各截去一個邊長為x的小正方形后,沿圖中虛線部分折起,做成一個無蓋方盒.
(1)試用x表示方盒的容積V(x),并寫出x的范圍;
(2)求方盒容積V(x)的最大值及相應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.點(diǎn)P(2,-1,3)在坐標(biāo)平面xOz內(nèi)的投影點(diǎn)坐標(biāo)為(2,0,3).

查看答案和解析>>

同步練習(xí)冊答案