1.設(shè)函數(shù)f(x)=|2x-1|-|ax+2|,.
(Ⅰ)當(dāng)a=1時(shí),求不等式f(x)>0的解集;
(Ⅱ)當(dāng)a=2時(shí),若?x0∈R,使f(x0)<4m成立,求實(shí)數(shù)m的取值范圍.

分析 (Ⅰ)分類討論、去掉絕對(duì)值,求得不等式的解集,綜合可得結(jié)論.
(Ⅱ)當(dāng)a=2時(shí),利用絕對(duì)值三角不等式,求得f(x)的范圍,從而求得m的范圍.

解答 解:(Ⅰ)當(dāng)a=1時(shí),f(x)=|2x-1|-|x+2|
?①當(dāng)x<-2時(shí),f(x)=|2x-1|-|x+2|=1-2x+x+2=-x+3,不等式f(x)>0,即-x+3>0,解得x<3.
又x<-2,∴不等式的解集為{x|x<-2};
②?當(dāng)$-2≤x≤\frac{1}{2}$時(shí),f(x)=|2x-1|-|x+2|=1-2x-x-2=-3x-1,不等式f(x)>0,即-3x-1>0,解得$x<-\frac{1}{3}$.
又$-2≤x≤\frac{1}{2}$,∴不等式的解集為{x|$-2≤x<-\frac{1}{3}$};
③?當(dāng)$x>\frac{1}{2}$時(shí),f(x)=|2x-1|-|x+2|=2x-1-x-2=x-3,不等式f(x)>0,即x-3>0,解得x>3.
又$x>\frac{1}{2}$,∴不等式的解集為{x|x>3}.
綜上,不等式f(x)>0的解集為$({-∞,-\frac{1}{3}})∪(3,+∞)$.
(Ⅱ)當(dāng)a=2時(shí),f(x)=|2x-1|-|2x+2|≤|2x-1-(2x+2)|=3,∴-3≤f(x)≤3.
若?x0∈R,使f(x0)<4m成立,則4m≥-3,∴$m≥-\frac{3}{4}$,
因此m的取值范圍是$[{-\frac{3}{4},+∞})$.

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,函數(shù)的能成立問題,絕對(duì)值三角不等式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓C:x2+y2=4,直線l:y+x-t=0,P為直線l上一動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若直線l交圓C于A、B兩點(diǎn),且∠AOB=$\frac{2π}{3}$,求實(shí)數(shù)t的值;
(2)若t=4,過點(diǎn)P做圓的切線,切點(diǎn)為T,求$\overrightarrow{PO}$•$\overrightarrow{PT}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{\sqrt{2}}{2}t\\ y=\frac{\sqrt{2}}{2}t\end{array}$(t∈R).以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ2cos 2θ+4ρ2sin2θ=3.
(1)求出直線l的普通方程及曲線C1的直角坐標(biāo)方程;
(2)若直線l與曲線C1交于A,B兩點(diǎn),點(diǎn)C是曲線C1上與A,B不重合的一點(diǎn),求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.$\int{\begin{array}{l}1\\ 0\end{array}}({e^x}+2x)$=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知直線l:2x-y-2=0和直線l:x+2y-1=0關(guān)于直線l對(duì)稱,則直線l的斜率為$\frac{1}{3}$或-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間有關(guān)系,某農(nóng)科所對(duì)此關(guān)系進(jìn)行了調(diào)查分析,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期12月1日12月2日12月3日12月4日12月5日
溫差x/℃101113128
發(fā)芽數(shù)y/顆2325302616
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(Ⅱ)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(Ⅲ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若“存在實(shí)數(shù)x,使x2-2x+m=0”為真命題,則實(shí)數(shù)m的取值范圍是m≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.北京是我國(guó)嚴(yán)重缺水的城市之一.為了倡導(dǎo)“節(jié)約用水,從我做起”,小明在他所在學(xué)校的2000名同學(xué)中,隨機(jī)調(diào)查了40名同學(xué)家庭中一年的月均用水量(單位:噸),并將月均用水量分為6組:[2,4),[4,6),[6,8),[8,10),[10,12),[12,14]加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(Ⅰ)給出圖中實(shí)數(shù)a的值;
(Ⅱ)根據(jù)樣本數(shù)據(jù),估計(jì)小明所在學(xué)校2000名同學(xué)家庭中,月均用水量低于8噸的約有多少戶;
(Ⅲ)在月均用水量大于或等于10噸的樣本數(shù)據(jù)中,小明決定隨機(jī)抽取2名同學(xué)家庭進(jìn)行訪談,求這2名同學(xué)中恰有1人所在家庭的月均用水量屬于[10,12)組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=$\frac{xln|x|}{|x|}$的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案