精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系xoy中,曲線C1的參數方程為 (t為參數).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4 sinθ. (Ⅰ)將C2的方程化為直角坐標方程;
(Ⅱ)設C1 , C2交于A,B兩點,點P的坐標為 ,求|PA|+|PB|.

【答案】解:(Ⅰ)∵曲線C2:ρ=4 sinθ,∴ , ∴C2的直角坐標方程為: ,即
(Ⅱ)將 轉化為 ,(t為參數).
代入
得t2﹣2t﹣6=0,
則t1+t2=2,t1t2=﹣6,
∴|PA|+|PB|= =
【解析】(Ⅰ)利用ρ2=x2+y2 , ρcosθ=x,ρsinθ=y,能求出C2的直角坐標方程.(Ⅱ)將 轉化為 ,(t為參數).把 代入 ,得t2﹣2t﹣6=0,由此能求出|PA|+|PB|.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Ω是一個與x軸的正半軸、y軸的正半軸分別相切于點C、D的定圓所圍成區(qū)域(含邊界),A、B、C、D是該圓的四等分點,若點P(x,y)、P′(x′,y′)滿足x≤x′且y≥y′,則稱P優(yōu)于P′,如果Ω中的點Q滿足:不存在Ω中的其它點優(yōu)于Q,那么所有這樣的點Q組成的集合是劣。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若數列{an}滿足:a1=1,an+1=ran+r(n∈N* , 實數r是非零常數),則“r=1”是“數列{an}是等差數列”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入的x的值為2,則輸出的n的值為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠ADC=120°,AB=2CD=2,平面D1DCC1垂直平面ABCD,D1C⊥AB,M是線段AB的中點.
(Ⅰ)求證:D1M∥面B1BCC1;
(Ⅱ)若DD1=2,求平面C1D1M和平面ABCD所成的銳角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)滿足 ,當x∈[0,1]時,f(x)=x,若在區(qū)間(﹣1,1]上,方程f(x)﹣4ax﹣a=0有兩個不等的實根,則實數a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線與坐標軸的交點都在圓上.

(1)求圓的方程;

(2)若圓與直線交于,兩點,且,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一種畫橢圓的工具如圖1所示.O是滑槽AB的中點,短桿ON可繞O轉動,長桿MN通過N處鉸鏈與ON連接,MN上的栓子D可沿滑槽AB滑動,且DN=ON=1,MN=3,當栓子D在滑槽AB內作往復運動時,帶動N繞O轉動,M處的筆尖畫出的橢圓記為C,以O為原點,AB所在的直線為x軸建立如圖2所示的平面直角坐標系.
(1)求橢圓C的方程;
(2)設動直線l與兩定直線l1:x﹣2y=0和l2:x+2y=0分別交于P,Q兩點.若直線l總與橢圓C有且只有一個公共點,試探究:△OPQ的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】記f(n)為最接近 (n∈N*)的整數,如f(1)=1,f(2)=1,f(3)=2,f(4)=2,f(5)=2,…,若 + + +…+ =4054,則正整數m的值為(
A.2016×2017
B.20172
C.2017×2018
D.2018×2019

查看答案和解析>>

同步練習冊答案