8.函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^{x-1}}+x,x≤0}\\{-1+lnx,x>0}\end{array}}$的零點個數(shù)為2.

分析 分別求出函數(shù)在兩段上的零點,即可得出結(jié)論.

解答 解:由題意,x≤0時,函數(shù)有一個零點;x>0時,-1+lnx=0,∴x=e,有一個零點,
∴函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^{x-1}}+x,x≤0}\\{-1+lnx,x>0}\end{array}}$的零點個數(shù)為2,
故答案為2.

點評 本題考查了函數(shù)的零點與方程的根的聯(lián)系與應用,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)y=$\frac{lnx}{x}$的最大值等于$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.命題p:“關(guān)于x的方程x2+ax+1=0有解”,命題q:“?x∈R,e2x-2ex+a≥0恒成立”,若“p∧q”為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.若函數(shù)f(x)=$\sqrt{\frac{6}{x+1}-1}$的定義域為集合A,函數(shù)g(x)=lg(-x2+2x+3)的定義域為集合B.
(1)求A∩(∁RB);
(2)若集合C={x|2m-1<x<m+1},且B∩C=C,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.比較下列三數(shù)的大小
(1)log30.8,log40.8,log50.8;
(2)1.10.9,log1.10.9,log0.70.8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5},則(∁UA)∪(∁UB)=( 。
A.{1,2,3,4,5}B.{3}C.{1,2,4,5}D.{1,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=x+sinx(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,則當y≥1時,$\frac{x+y+1}{x+1}$的取值范圍是( 。
A.[$\frac{5}{4}$,$\frac{7}{4}$]B.[0,$\frac{7}{4}$]C.[$\frac{5}{4}$,$\frac{7}{3}$]D.[1,$\frac{7}{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若f(x)是R上的減函數(shù),且f(x)的圖象過點A(0,3),B(3,-1),則不等式|f(x+t)-1|<2的解集為(-1,2),t的值是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知A=(x,y)|${\frac{y-3}{x-1}$=3,x,y∈R},B={(x,y)|4x+ay=16,x,y∈R},若A∩B=∅,則實數(shù)a的值為( 。
A.$-\frac{4}{3}$B.4C.-$\frac{4}{3}$或 4D.$\frac{4}{3}$

查看答案和解析>>

同步練習冊答案