18.函數(shù)y=$\frac{lnx}{x}$的最大值等于$\frac{1}{e}$.

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值即可.

解答 解:函數(shù)的定義域是(0,+∞),
y′=$\frac{1-lnx}{{x}^{2}}$,
令y′>0,解得:0<x<e,
令y′<0,解得:x>e,
故函數(shù)在(0,e)遞增,在(e,+∞)遞減,
故x=e時,函數(shù)取得最大值,最大值是$\frac{1}{e}$,
故答案為:$\frac{1}{e}$.

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.sin315°-cos135°+2sin570°=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)奇函數(shù)f(x)滿足f(x-2)=f(x),當(dāng)0≤x≤1時f(x)=2x-4x2,則$f(-\frac{9}{2})$=(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求函數(shù)f(x)=x(1-x2)在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為平行四邊形,∠ABC+∠ADC=90°,E是線段AD的中點,F(xiàn)在線段PD上運動,記$\frac{PF}{PD}$=λ.
(1)若λ=$\frac{1}{2}$,證明:平面BEF⊥平面ABCD;
(2)若λ=$\frac{1}{3}$,PA=AB=AC=6,求三棱錐C-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=$\frac{e^x}{x}$.
(1)求曲線y=f(x)在x=1處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(Ⅰ)已知y=$\frac{{1-{x^2}}}{e^x}$,求y′.
(Ⅱ)已知y=x2sin(3x+π),求y′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知tanα,tanβ是方程3x2+5x-7=0的兩根,則cos2(α+β)的值為.$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^{x-1}}+x,x≤0}\\{-1+lnx,x>0}\end{array}}$的零點個數(shù)為2.

查看答案和解析>>

同步練習(xí)冊答案