9.設(shè)x,y∈R+,求證:$\sqrt{{x}^{2}-3x+3}$+$\sqrt{{y}^{2}-3y+3}$+$\sqrt{{x}^{2}-\sqrt{3}xy+{y}^{2}}$≥$\sqrt{6}$.

分析 利用幾何意義,如下設(shè)計:以$\sqrt{3}$為直角邊的等腰直角三角形OAB,點O為直角頂點.分別做出射線OX,OY.使得OX與OA的夾角為30°,使得OX與OY的夾角為30°,使得OY與OB的夾角為30°,則$\sqrt{{x}^{2}-3x+3}$,$\sqrt{{y}^{2}-3y+3}$,$\sqrt{{x}^{2}-\sqrt{3}xy+{y}^{2}}$,分別是AX,BY,XY的長度.即可得出.

解答 證明:利用幾何意義,如下設(shè)計:以$\sqrt{3}$為直角邊的等腰直角三角形OAB,點O為直角頂點.分別做出射線OX,OY.
使得OX與OA的夾角為30°,使得OX與OY的夾角為30°,使得OY與OB的夾角為30°,
則$\sqrt{{x}^{2}-3x+3}$,$\sqrt{{y}^{2}-3y+3}$,$\sqrt{{x}^{2}-\sqrt{3}xy+{y}^{2}}$,分別是AX,BY,XY的長度.
∴AX+BY+XY的最小值為AB=$\sqrt{6}$.

點評 本題考查了兩點之間的距離公式及其幾何意義,考查了數(shù)形結(jié)合方法、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,a=3,c=2,cosB=$\frac{1}{3}$,則b=3;sinC=$\frac{{4\sqrt{2}}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)f(x)是定義在[-3,3]上的偶函數(shù),當(dāng)0≤x≤3時,f(x)單調(diào)遞減,若f(1-2m)<f(m)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx.
(1)若曲線g(x)=f(x)+$\frac{a}{x}$-1在點(2,g (2))處的切線與直線x+2y-1=0平行,求實數(shù)a的值.
(2)若h(x)=f(x)-$\frac{b(x-1)}{x+1}$在定義域上是增函數(shù),求實數(shù)b的取值范圍.
(3)設(shè)m、n∈R*,且m≠n,求證:$\frac{m-n}{m+n}<|\frac{lnm-lnn}{2}$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和為Sn,且滿足an=2Sn-1(n∈N*)
(Ⅰ)求證:數(shù)列{an}為等比數(shù)列;
(Ⅱ)若bn=(2n+1)an,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若關(guān)于x的方程x2-mx+2=0在(1,3)有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.對于定義在R上的函數(shù)f(x),如果存在實數(shù)a,使得f(a+x)•f(a-x)=1對任意實數(shù)x∈R恒成立,則稱f(x)為關(guān)于a的“倒函數(shù)”.已知定義在R上的函數(shù)f(x)是關(guān)于0和1的“倒函數(shù)”,且當(dāng)x∈[0,1]時,f(x)的取值范圍為[1,2],則當(dāng)x∈[1,2]時,f(x)的取值范圍為[$\frac{1}{2}$,1],當(dāng)x∈[-2016,2016]時,f(x)的取值范圍為[$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=loga(x-x2)(0<a<1)的增區(qū)間為($\frac{1}{2}$,1),值域為(loga$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.?dāng)?shù)集{0,1}與數(shù)集{1}可以建立1個函數(shù)關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案