14.若關(guān)于x的方程x2-mx+2=0在(1,3)有解,求實(shí)數(shù)m的取值范圍.

分析 由參數(shù)分離可得m,不等式(1,3)恒成立,運(yùn)用基本不等式,結(jié)合恒成立思想可得m的范圍.

解答 解:關(guān)于x的方程x2-mx+2=0在(1,3)有解.
轉(zhuǎn)化為:m=$x+\frac{2}{x}$,x∈(1,3)上的值域問題,
$x+\frac{2}{x}≥2\sqrt{x•\frac{2}{x}}$=$2\sqrt{2}$,當(dāng)且僅當(dāng)x=$\sqrt{2}$時取等號,當(dāng)x=1時,$x+\frac{2}{x}=3$,當(dāng)x=3時,$x+\frac{2}{x}=3+\frac{2}{3}$=$\frac{11}{3}$,
可得m∈[2$\sqrt{2}$$,\frac{11}{3}$).
實(shí)數(shù)m的取值范圍:[2$\sqrt{2}$$,\frac{11}{3}$).

點(diǎn)評 本題考查函數(shù)的恒成立問題轉(zhuǎn)化求函數(shù)的值域問題,考查函數(shù)的單調(diào)性的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知F是拋物線y2=8x的焦點(diǎn),A,B是該拋物線上兩個不同的點(diǎn),|AF|+|BF|=12,則線段AB中點(diǎn)M的橫坐標(biāo)為( 。
A.16B.8C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.平面直角坐標(biāo)系x0y中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,左、右焦點(diǎn)分別是F1,F(xiàn)2,以F1為圓心以3為半徑的圓與以F2為圓心以1為半徑的圓相交,且交點(diǎn)在橢圓C上.
(1)求橢圓C的方程;
(2)過橢圓C上一動點(diǎn)P(x0,y0)(y0≠0)的直線1:$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{^{2}}$=1,過F2與x軸垂直的直線記為l1,右準(zhǔn)線記為l2;
①設(shè)直線l與直線l1相交于點(diǎn)M,直線1與直線l2相交于點(diǎn)N.證明$\frac{M{F}_{2}}{N{F}_{2}}$恒為定值,并求此定值.
②若連接F1P并延長與直線l2相交于點(diǎn)Q.橢圓C的右頂點(diǎn)A,設(shè)直線PA的斜率為k1,直線QA的斜率為k2,求k1•k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.“女大學(xué)生就業(yè)難”究竟有多難?其難在何處?女生在求職中是否收到了不公平對待?通過對某大學(xué)應(yīng)屆畢業(yè)生的調(diào)查與實(shí)證分析試對下列問題提出解答.為調(diào)查某地區(qū)大學(xué)應(yīng)屆畢業(yè)生的調(diào)查,用簡單隨機(jī)抽樣方法從該地區(qū)抽取了500為大學(xué)生做問卷調(diào)查,結(jié)果如下:
性別
是否公平
公平4030
不公平160270
(1)估計(jì)該地區(qū)大學(xué)生中,求職中收到了公平對待的學(xué)生的概率;
(2)能否有99%的把握認(rèn)為該地區(qū)的大學(xué)生求職中受到了不公平對待與性別有關(guān)?
(3)根據(jù)(2)的結(jié)論,能否提出更好的調(diào)查方法來估計(jì)該地區(qū)的大學(xué)生中,求職中是否受到了不公平對待學(xué)生的比例?說明理由.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.0000.0100.001
k3.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)x,y∈R+,求證:$\sqrt{{x}^{2}-3x+3}$+$\sqrt{{y}^{2}-3y+3}$+$\sqrt{{x}^{2}-\sqrt{3}xy+{y}^{2}}$≥$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求函數(shù)f(x)=$\sqrt{x}$在區(qū)間[x0,x0+△x]的平均變化率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知圓x2+y2+mx-$\frac{1}{4}$=0與拋物線y=$\frac{1}{4}$x的準(zhǔn)線相切,則m=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥側(cè)面BB1C1C,AC⊥CC1
(1)求證:平面A1BC1⊥平面BB1C1C;
(2)若點(diǎn)M在棱AC上,且$\frac{AM}{MC}$=$\frac{2}{3}$,試問:在棱B1C1上是否存在一點(diǎn)N,使得直線MN∥平面ABB1A1?若存在,試確定點(diǎn)N的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知cos2B+cosB=1-cosAcosC
(1)求證:a,b,c成等比數(shù)列;
(2)若b=2,求△ABC的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案