【題目】已知函數().
(Ⅰ)若函數在處的切線平行于直線,求實數的值;
(Ⅱ)討論在上的單調性;
(Ⅲ)若存在,使得成立,求的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖所示,直線PQ與⊙O切于點A,AB是⊙O的弦,∠PAB的平分線AC交⊙O于點C,連接CB,并延長與直線PQ相交于Q點.
(1)求證:QC·AC=QC2-QA2;
(2)若AQ=6,AC=5,求弦AB的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖:橢圓與雙曲線有相同的焦點、,它們在軸右側有兩個交點、,滿足.將直線左側的橢圓部分(含, 兩點)記為曲線,直線右側的雙曲線部分(不含, 兩點)記為曲線.以為端點作一條射線,分別交于點,交于點(點在第一象限),設此時.
(1)求的方程;
(2)證明: ,并探索直線與斜率之間的關系;
(3)設直線交于點,求的面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AB為圓柱的軸,CD為底面直徑,E為底面圓周上一點,AB=1,CD=2,CE=DE.
求(1)三棱錐A﹣CDE的全面積;
(2)點D到平面ACE的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為迎接2017年“雙”,“雙”購物狂歡節(jié)的來臨,某青花瓷生產廠家計劃每天生產湯碗、花瓶、茶杯這三種瓷器共個,生產一個湯碗需分鐘,生產一個花瓶需分鐘,生產一個茶杯需分鐘,已知總生產時間不超過小時.若生產一個湯碗可獲利潤元,生產一個花瓶可獲利潤元,生產一個茶杯可獲利潤元.
(1)使用每天生產的湯碗個數與花瓶個數表示每天的利潤(元);
(2)怎樣分配生產任務才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據氣象中心觀察和預測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數圖象如圖所示,過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側部分的面積即為t(h)內沙塵暴所經過的路程s(km).
(1)當t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數學關系式表示出來;
(3)若N城位于M地正南方向,且距M地650km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a<1,集合A={x|x<a﹣2或x>﹣a},集合B={x|cos(xπ)=1},全集U=R.
(1)當a=0時,求(UA)∩B;
(2)若(UA)∩B恰有2個元素,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com