【題目】已知函數(shù),對任意a,
恒有
,且當
時,有
.
Ⅰ
求
;
Ⅱ
求證:
在R上為增函數(shù);
Ⅲ
若關(guān)于x的不等式
對于任意
恒成立,求實數(shù)t的取值范圍.
【答案】(Ⅰ); (Ⅱ)見解析; (Ⅲ)
.
【解析】
Ⅰ
根據(jù)題意,由特殊值法令
,則
,變形可得
的值,
Ⅱ
任取
,
,且設(shè)
,則
,結(jié)合
,分析可得
,結(jié)合函數(shù)的單調(diào)性分析可得答案;
Ⅲ
根據(jù)題意,原不等式可以變形為
,結(jié)合函數(shù)的單調(diào)性可得
,令
,則原問題轉(zhuǎn)化為
在
上恒成立,即
對任意
恒成立,結(jié)合二次函數(shù)的性質(zhì)分析可得答案.
Ⅰ
根據(jù)題意,在
中,
令,則
,則有
;
Ⅱ
證明:任取
,
,且設(shè)
,則
,
,
又由,
則,
則有,
故在R上為增函數(shù).
Ⅲ
根據(jù)題意,
,
即,則
,
又由,則
,
又由在R上為增函數(shù),則
,
令,
,則
,
則原問題轉(zhuǎn)化為在
上恒成立,
即對任意
恒成立,
令,只需
,
而,
,
當時,
,則
.
故t的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在區(qū)間上的函數(shù)
滿足
,且當
時,
.
(1)求的值;
(2)證明:為單調(diào)增函數(shù);
(3)若,求
在
上的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),其中
N
,
≥2,且
R.
(1)當,
時,求函數(shù)
的單調(diào)區(qū)間;
(2)當時,令
,若函數(shù)
有兩個極值點
,
,且
,求
的取值范圍;
(3)當時,試求函數(shù)
的零點個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】支付寶作為一款移動支付工具,在日常生活中起到了重要的作用.巴蜀中學高2018屆學生為了調(diào)查支付寶在人群中的使用情況,在街頭隨機對名市民進行了調(diào)查,結(jié)果如下.
(1)對名市民按年齡以及是否使用支付寶進行分組,得到以下表格,試問能否有
的把握認為“使用支付寶與年齡有關(guān)”?
使用支付寶 | 不使用支付寶 | 合計 | |
| |||
| |||
合計 |
(2)現(xiàn)采用分層抽樣的方法,從被調(diào)查的歲以下的市民中抽取了
位進行進一步調(diào)查,然后從這
位市民中隨機抽取
位,求至少抽到
位“使用支付寶”的市民的概率;
(3) 為了鼓勵市民使用支付寶,支付寶推出了“獎勵金”活動,每使用支付寶支付一次,分別有的概率獲得
元獎勵金,每次支付獲得的獎勵金情況互不影響.若某位市民在一周使用了
次支付寶,記
為這一周他獲得的獎勵金數(shù),求
的分布列和數(shù)學期望.
附:,其中
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)n為正整數(shù)集合,n對于集合A中的任意元素
和
,記
.
(1)當時,若
,
,求
和
的值;
(2)當時,設(shè)B是A的子集,且滿足:對于B中的任意元素α,β,當α,β相同時,
是奇數(shù);當α,β不同時,
是偶數(shù).求集合B中元素個數(shù)的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,如圖所示,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設(shè)利用的舊墻的長度為x(單位:元)。
(Ⅰ)將y表示為x的函數(shù);
(Ⅱ)試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為調(diào)查人們在購物時的支付習慣,某超市對隨機抽取的600名顧客的支付方式進行了統(tǒng)計,數(shù)據(jù)如下表所示:
支付方式 | 微信 | 支付寶 | 購物卡 | 現(xiàn)金 |
人數(shù) | 200 | 150 | 150 | 100 |
現(xiàn)有甲、乙、丙三人將進入該超市購物,各人支付方式相互獨立,假設(shè)以頻率近似代替概率.
(1)求三人中使用微信支付的人數(shù)多于現(xiàn)金支付人數(shù)的概率;
(2)記為三人中使用支付寶支付的人數(shù),求
的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com