已知,函數(shù).
(1)設(shè),將函數(shù)表示為關(guān)于的函數(shù),求的解析式和定義域;
(2)對(duì)任意,不等式都成立,求實(shí)數(shù)的取值范圍.

(1),定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/69/5/uez172.png" style="vertical-align:middle;" />;(2)實(shí)數(shù)的取值范圍是.

解析試題分析:(1)由恒等變換公式可求得,并可以表示出定義域;
(2)由求出的取值范圍,化簡(jiǎn)成形式,用函數(shù)單調(diào)性即可求出實(shí)數(shù)的取值范圍.
試題解析: (1)
2分
可得4分

6分
定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/69/5/uez172.png" style="vertical-align:middle;" />      8分
(2) ∵
10分
恒成立
恒成立化簡(jiǎn)得
又∵
    12分


上為減函數(shù)14分

  16分
考點(diǎn):恒等變換公式、恒成立問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知是半徑為,圓心角為的扇形,是扇形弧上的動(dòng)點(diǎn),是扇形的內(nèi)接矩形.記,求當(dāng)角取何值時(shí),矩形的面積最大?并求出這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),的最大值為2.
(1)求函數(shù)上的值域;
(2)已知外接圓半徑,角所對(duì)的邊分別是,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求的最小正周期和單調(diào)遞增區(qū)間;
(2)已知三邊長(zhǎng),且,的面積.求角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù))的最小正周期為
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)將函數(shù)的圖象向左平移個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)的圖象;若上至少含有10個(gè)零點(diǎn),求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量,,函數(shù).
(1)求函數(shù)的最小正周期;
(2)若,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)對(duì)于函數(shù),有下列結(jié)論:①是奇函數(shù);②是周期函數(shù),最小正周期為;③的圖象關(guān)于點(diǎn)對(duì)稱;④的圖象關(guān)于直線對(duì)稱.其中正確結(jié)論的序號(hào)是__________;(直接寫(xiě)出所有正確結(jié)論的序號(hào))
(2)對(duì)于函數(shù),求滿足的取值范圍;
(3)設(shè)函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ac/8/4mdnh.png" style="vertical-align:middle;" />,函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6b/2/jlo413.png" style="vertical-align:middle;" />,試判斷集合之間的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知α=,回答下列問(wèn)題.
(1)寫(xiě)出所有與α終邊相同的角;
(2)寫(xiě)出在(-4π,2π)內(nèi)與α終邊相同的角;
(3)若角β與α終邊相同,則是第幾象限的角?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=Asin,x∈R,A>0,0<φ<,y=f(x)的部分圖象如圖所示,P、Q分別為該圖象的最高點(diǎn)和最低點(diǎn),點(diǎn)P的坐標(biāo)為(1,A).

(1)求f(x)的最小正周期及φ的值;
(2)若點(diǎn)R的坐標(biāo)為(1,0),∠PRQ=,求A的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案