11.在正方體ABCD-A1B1C1D1中,異面直線AD,BD1所成角的余弦值為$\frac{\sqrt{3}}{3}$.

分析 以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線AD,BD1所成角的余弦值.

解答 解:以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
設(shè)正方體ABCD-A1B1C1D1中棱長(zhǎng)為1,
則A(1,0,0),D(0,0,0),B(1,1,0),D1(0,0,1),
$\overrightarrow{AD}$=(-1,0,0),$\overrightarrow{B{D}_{1}}$=(-1,-1,1),
設(shè)異面直線AD,BD1所成角為θ,
則cosθ=$\frac{|\overrightarrow{AD}•\overrightarrow{B{D}_{1}}|}{|\overrightarrow{AD}|•|\overrightarrow{B{D}_{1}}|}$=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.
∴異面直線AD,BD1所成角的余弦值為$\frac{\sqrt{3}}{3}$.
故答案為:$\frac{{\sqrt{3}}}{3}$.

點(diǎn)評(píng) 本題考查異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,已知2sin2A+sin2B=sin2C.
(1)若b=2a=4,求△ABC的面積;
(2)求$\frac{{c}^{2}}{ab}$的最小值,并確定此時(shí)$\frac{c}{a}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥\frac{1}{2}x}\\{x≤7}\\{2x-y≥4}\end{array}\right.$,若z=ax+y有最大值7,則實(shí)數(shù)a的值為-$\frac{3}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若曲線F(x,y)=0上的兩點(diǎn)P1(x1,y1),P2(x2,y2)滿足x1≤x2且y1≥y2,則稱這兩點(diǎn)為曲線F(x,y)=0上的一對(duì)“雙胞點(diǎn)”.下列曲線中:
①$\frac{x^2}{20}+\frac{y^2}{16}=1(xy>0)$;  
②$\frac{x^2}{20}-\frac{y^2}{16}=1(xy>0)$;
③y2=4x;             
④|x|+|y|=1.
存在“雙胞點(diǎn)”的曲線序號(hào)是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)α,β是兩個(gè)不同的平面,l是一條直線,以下命題正確的是(  )
A.若α∥β,l∥α,則l?βB.若α∥β,l⊥α,則 l⊥β
C.若α⊥β,l⊥α,則l?βD.若α⊥β,l∥α,則 l⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知F1為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦點(diǎn),過F1的直線l與橢圓交于兩點(diǎn)P,Q.
(Ⅰ)若直線l的傾斜角為45°,求|PQ|;
(Ⅱ)設(shè)直線l的斜率為k(k≠0),點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P′,點(diǎn)Q關(guān)于x軸的對(duì)稱點(diǎn)為Q′,P′Q′所在直線的斜率為k′.若|k′|=2,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如果直線ax+2y-3=0與2x-y=0垂直,那么a等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在平面直角坐標(biāo)系xOy中,F(xiàn)1,F(xiàn)2分別為橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$的左、右焦點(diǎn),若點(diǎn)P在橢圓上,且PF1=2,則PF2的值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.近幾年,由于環(huán)境的污染,霧霾越來越嚴(yán)重,某環(huán)保公司銷售一種PM2.5顆粒物防護(hù)口罩深受市民歡迎.已知這種口罩的進(jìn)價(jià)為40元,經(jīng)銷過程中測(cè)出年銷售量y(萬件)與銷售單價(jià)x(元)存在如圖所示的一次函數(shù)關(guān)系,每年銷售這種口罩的總開支z(萬元)(不含進(jìn)價(jià))與年銷量y(萬件)存在函數(shù)關(guān)系z(mì)=10y+42.5.
(I)求y關(guān)于x的函數(shù)關(guān)系;
(II)寫出該公司銷售這種口罩年獲利W(萬元)關(guān)于銷售單價(jià)x(元)的函數(shù)關(guān)系式
(年獲利=年銷售總金額-年銷售口罩的總進(jìn)價(jià)-年總開支金額);當(dāng)銷售單價(jià)x為何值時(shí),年獲利最大?最大獲利是多少?
(III)若公司希望該口罩一年的銷售獲利不低于57.5萬元,則該公司這種口罩的銷售單價(jià)應(yīng)定在什么范圍?在此條件下要使口罩的銷售量最大,你認(rèn)為銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案