已知橢圓:()過點,其左、右焦點分別為,且
.
(1)求橢圓的方程;
(2)若是直線上的兩個動點,且,則以為直徑的圓是否過定點?請說明理由.
科目:高中數(shù)學 來源:2012-2013學年北京市高三第四次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題14分)
已知橢圓()過點(0,2),離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過定點(2,0)的直線與橢圓相交于兩點,且為銳角(其中為坐標原點),求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年山東省萊蕪市高三12月測試文科數(shù)學卷(解析版) 題型:解答題
已知橢圓()過點(0,2),離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過定點(2,0)的直線與橢圓相交于兩點,且為銳角(其中為坐標原點),求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆遼寧省高二12月月考文科數(shù)學試卷(解析版) 題型:解答題
已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年陜西省高三月考(七)文科數(shù)學試卷 題型:解答題
(本題滿分13分) 已知橢圓()過點(0,2),離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆福建省高二上學期期末考試文科數(shù)學 題型:解答題
(本小題滿分12分)
已知橢圓C:過點,且長軸長等于4.
(1)求橢圓C的方程;
(2)是橢圓C的兩個焦點,⊙O是以為直徑的圓,直線與⊙O相切,并與橢圓C交于不同的兩點A、B,若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com