分析 (I)利用拋物線的定義,點M(2$\sqrt{3}$,m)到其焦點F的距離.求解p,點的坐標滿足方程求m的值;
(Ⅱ)設A(x1,y1),B(x2,y2),利用平方差法,以及$\overrightarrow{OA}•\overrightarrow{OB}=6$,求出y2y1=-6,表示出三角形的面積,利用基本不等式求解△ABO面積的最小值.
解答 解:(Ⅰ)由拋物線定義可得$2\sqrt{3}+\frac{p}{2}=\frac{{9\sqrt{3}}}{4}$,解得$p=\frac{{\sqrt{3}}}{2}$,
∴所求拋物線方程為${y^2}=\sqrt{3}x$,
把M($2\sqrt{3}$,m)代入可解得$m=±\sqrt{6}$,…(4分)
(Ⅱ)設A(x1,y1),B(x2,y2),則$y_1^2=\sqrt{3}{x_1}$,$y_2^2=\sqrt{3}{x_2}$.
由$\overrightarrow{OA}•\overrightarrow{OB}=6$,得$\frac{y_1^2y_2^2}{3}+{y_1}{y_2}=6$,
又A,B在該拋物線上且位于x軸的兩側(cè),故y2y1=-6.…(6分)
∵$cos∠AOB=\frac{{\overrightarrow{OA}•\overrightarrow{OB}}}{{|{\overrightarrow{OA}}|•|{\overrightarrow{OB}}|}}$,$sin∠AOB=\sqrt{1-{{(\frac{{\overrightarrow{OA}•\overrightarrow{OB}}}{{|{\overrightarrow{OA}}|•|{\overrightarrow{OB}}|}})}^2}}$
∴${S_{△ABO}}=\frac{1}{2}|{\overrightarrow{OA}}||{\overrightarrow{OB}}|sin∠AOB=\frac{1}{2}|{\overrightarrow{OA}}||{\overrightarrow{OB}}|\sqrt{1-{{(\frac{{\overrightarrow{OA}•\overrightarrow{OB}}}{{|{\overrightarrow{OA}}|•|{\overrightarrow{OB}}|}})}^2}}$…(8分)
=$\frac{1}{2}\sqrt{{{(|{\overrightarrow{OA}}||{\overrightarrow{OB}}|)}^2}-36}$=$\frac{1}{2}\sqrt{(\frac{y_1^4}{3}+y_1^2)(\frac{y_2^4}{3}+y_2^2)-36}$=$\frac{1}{2}\sqrt{12(y_1^2+\frac{36}{y_1^2}+12)}$=$\sqrt{3}|{y_1^{\;}+\frac{6}{{y_1^{\;}}}}|≥6\sqrt{2}$.
∴△ABO面積的最小值為$6\sqrt{2}$. …(12分)
點評 本題考查拋物線的方程的綜合應用,直線與拋物線的位置關系,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 3 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com