15.已知a>1,b>0,且a+b=2,求$\frac{1}{a-1}$+$\frac{2}$的最小值.

分析 a>1,b>0,且a+b=2,可得(a-1)+b=1.變形$\frac{1}{a-1}$+$\frac{2}$=[(a-1)+b]$(\frac{1}{a-1}+\frac{2})$,利用基本不等式的性質(zhì)即可得出.

解答 解:∵a>1,b>0,且a+b=2,∴(a-1)+b=1.
∴$\frac{1}{a-1}$+$\frac{2}$=[(a-1)+b]$(\frac{1}{a-1}+\frac{2})$=3+$\frac{a-1}$+$\frac{2(a-1)}$≥3+2$\sqrt{\frac{a-1}×\frac{2(a-1)}}$=3+2$\sqrt{2}$,
當(dāng)且僅當(dāng)b=2-$\sqrt{2}$,a=$\sqrt{2}$時(shí)取等號(hào).
∴$\frac{1}{a-1}$+$\frac{2}$的最小值是3+2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列四個(gè)結(jié)論正確的是( 。
A.若n組數(shù)據(jù)(x1,y1),…(xn,yn)的散點(diǎn)都在y=-2x+1上,則相關(guān)系數(shù)r=-1
B.回歸直線(xiàn)就是散點(diǎn)圖中經(jīng)過(guò)樣本數(shù)據(jù)點(diǎn)最多的那條直線(xiàn)
C.已知點(diǎn)A(-1,0),B(1,0),若|PA|+|PB|=2,則動(dòng)點(diǎn)P的軌跡為橢圓
D.設(shè)回歸直線(xiàn)方程為$\widehat{y}$=2-2.5x,當(dāng)變量x增加一個(gè)單位時(shí),$\widehat{y}$平均增加2.5個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.使sinx<cosx成立的一個(gè)區(qū)間是( 。
A.(-$\frac{3}{4}$π,$\frac{π}{4}$)B.(-$\frac{1}{2}$π,$\frac{π}{2}$)C.(-$\frac{1}{4}$π,$\frac{3π}{4}$)D.(0,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.不等式-2x(x-3)(3x+1)>0的解集為(-∞,-$\frac{1}{3}$)∪(0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若函數(shù)f(x)=x2+4x+5-c的最小值為2,則函數(shù)y=f(x-3)的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.給定命題p:x>4,q:|x-1|>2,則¬p是¬q的必要不充分條件(備注:從充要,充分不必要,必要不充分中選擇其一作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在區(qū)間[-1,2]上任取一個(gè)數(shù)x,則事件“($\frac{1}{2}$)x≥1”發(fā)生的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且滿(mǎn)足f(3)=1,f(-2)=3,當(dāng)x≠0時(shí)有x•f'(x)>0恒成立,若非負(fù)實(shí)數(shù)a、b滿(mǎn)足f(2a+b)≤1,f(-a-2b)≤3,則$\frac{b+2}{a+1}$的取值范圍為$[{\frac{4}{5},3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},則(∁UP)∩Q=( 。
A.{3,5}B.{2,4}C.{1,2,4,6}D.{1,2,3,4,5}

查看答案和解析>>

同步練習(xí)冊(cè)答案