在某校教師趣味投籃比賽中,比賽規(guī)則是: 每場投6個球,至少投進(jìn)4個球且最后2個球都投進(jìn)者獲獎;否則不獲獎. 已知教師甲投進(jìn)每個球的概率都是.

(1)記教師甲在每場的6次投球中投進(jìn)球的個數(shù)為X,求X的分布列及數(shù)學(xué)期望;

(2)求教師甲在一場比賽中獲獎的概率;

(3)已知教師乙在某場比賽中,6個球中恰好投進(jìn)了4個球,求教師乙在這場比賽中獲獎的概率;教師乙在這場比賽中獲獎的概率與教師甲在一場比賽中獲獎的概率相等嗎?

【解析】(1)X的所有可能取值為0,1,2,3,4,5,6.

依條件可知X~B(6,).

P(X=k)=·()k·()6-k

(k=0,1,2,3,4,5,6)

X的分布列為:

X

0

1

2

3

4

5

6

P

所以E(X)=(0×1+1×12+2×60+3×160+4×240+5×192+6×64)

=4.

或因為X~B(6,),所以E(X)=6×=4.

即X的數(shù)學(xué)期望為4.

(2)設(shè)教師甲在一場比賽中獲獎為事件A,

則P(A)=×()2×()4××()5+()6.

即教師甲在一場比賽中獲獎的概率為.

(3)設(shè)教師乙在這場比賽中獲獎為事件B, 則P(B)=.

即教師乙在這場比賽中獲獎的概率為,

顯然,所以教師乙在這場比賽中獲獎的概率與教師甲在一場比賽中獲獎的概率不相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在某校教師趣味投籃比賽中,比賽規(guī)則是:每場投6個球,至少投進(jìn)4個球且最后2個球都投進(jìn)者獲獎;否則不獲獎.已知教師甲投進(jìn)每個球的概率都是
23

(Ⅰ)記教師甲在每場的6次投球中投進(jìn)球的個數(shù)為X,求X的分布列及數(shù)學(xué)期望;
(Ⅱ)求教師甲在一場比賽中獲獎的概率;
(Ⅲ)已知教師乙在某場比賽中,6個球中恰好投進(jìn)了4個球,求教師乙在這場比賽中獲獎的概率;教師乙在這場比賽中獲獎的概率與教師甲在一場比賽中獲獎的概率相等嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某校教師趣味投籃比賽中,比賽規(guī)則是:每場投6個球,至少投進(jìn)4個球且最后2個球都投進(jìn)者獲獎;否則不獲獎.已知教師甲投進(jìn)每個球的概率都是
23

(Ⅰ)記教師甲在每場的6次投球中投進(jìn)球的個數(shù)為X,求X的分布列及數(shù)學(xué)期望;
(Ⅱ)求教師甲在一場比賽中獲獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆北京市朝陽區(qū)高三第一次綜合練習(xí)數(shù)學(xué)理卷 題型:解答題

(本小題滿分13分)
在某校教師趣味投籃比賽中,比賽規(guī)則是: 每場投6個球,至少投進(jìn)4個球且最后2個球都投進(jìn)者獲獎;否則不獲獎. 已知教師甲投進(jìn)每個球的概率都是
Ⅰ)記教師甲在每場的6次投球中投進(jìn)球的個數(shù)為X,求X的分布列及數(shù)學(xué)期望;
(Ⅱ)求教師甲在一場比賽中獲獎的概率;
(Ⅲ)已知教師乙在某場比賽中,6個球中恰好投進(jìn)了4個球,求教師乙在這場比賽中獲獎的概率;教師乙在這場比賽中獲獎的概率與教師甲在一場比賽中獲獎的概率相等嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省兗州市高三第三次模擬考試?yán)砜茢?shù)學(xué)卷 題型:解答題

在某校教師趣味投籃比賽中,比賽規(guī)則是: 每場投6個球,至少投進(jìn)4個球且最后2個球都投進(jìn)者獲獎;否則不獲獎. 已知教師甲投進(jìn)每個球的概率都是

(Ⅰ)記教師甲在每場的6次投球中投進(jìn)球的個數(shù)為X,求X的分布列及數(shù)學(xué)期望;

(Ⅱ)求教師甲在一場比賽中獲獎的概率;

(Ⅲ)已知教師乙在某場比賽中,6個球中恰好投進(jìn)了4個球,求教師乙在這場比賽中獲獎的概率;教師乙在這場比賽中獲獎的概率與教師甲在一場比賽中獲獎的概率相等嗎?

 

查看答案和解析>>

同步練習(xí)冊答案