20.(1-2x)3的展開式中所有的二項式系數(shù)和為a,函數(shù)y=mx-2+1(m>0且m≠1)經(jīng)過的定點(diǎn)的縱坐標(biāo)為b,則${({bx+3y})^3}•{({x+\frac{5}{4}y})^5}$的展開式中x6y2的系數(shù)為( 。
A.320B.446C.482D.248

分析 根據(jù)題意求出a、b的值,再根據(jù)二項式展開式的通項公式求出r、k的值,從而得出展開式中x6y2的系數(shù).

解答 解:根據(jù)題意,a=23=8,
b=m0+1=2,
∴${({bx+3y})^3}•{({x+\frac{5}{4}y})^5}$=(2x+y)3•(x+2y)5
其通項公式為:
Tr+1•Tk+1=$C_3^r{(2x)^{3-r}}{y^r}\;•\;C_5^k{x^{5-k}}{(2y)^k}={2^{3+k-r}}C_3^r\;•$$C_5^k{x^{8-r-k}}{y^{r+k}}$,
令r+k=2,得r=0,k=2;或r=1,k=1;或r=2,k=0;
∴展開式中x6y2的系數(shù)為:
25•${C}_{3}^{0}$•${C}_{5}^{2}$+23•${C}_{3}^{1}$•${C}_{5}^{1}$+2•${C}_{3}^{2}$•${C}_{5}^{0}$=320+120+6=446.
故選:B.

點(diǎn)評 本題主要考查了二項展開式的通項在求解特定項中的應(yīng)用問題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$=(x-1,2),$\overrightarrow$=(y,-4),若$\overrightarrow{a}$∥$\overrightarrow$,則4x+2y的最小值為(  )
A.4B.2$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)α∈($\frac{π}{2}$,π),sinα=$\frac{\sqrt{6}}{3}$,則tan(π+α)等于( 。
A.-$\sqrt{2}$B.-$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.?dāng)?shù)列{an}滿足:an-1+an+1>2an(n>1,n∈N*),給出下述命題:
①若數(shù)列{an}滿足:a2>a1,則an>an-1(n>1,n∈N*)成立;
②存在常數(shù)c,使得an>c(n∈N*)成立;
③若p+q>m+n(其中p,q,m,n∈N*),則ap+aq>am+an;
④存在常數(shù)d,使得an>a1+(n-1)d(n∈N*)都成立.
上述命題正確的有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.全集U={1,2,3,4,5,6},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},則集合∁U(A∪B)的子集個數(shù)為( 。
A.1B.3C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某次數(shù)學(xué)考試試題中共有10道選擇題,每道選擇題都有4個選項,其中僅有一個是正確的.評分標(biāo)準(zhǔn)規(guī)定:“每題只選1項,答對得5分,不答或答錯得0分.”某考生每道題都給了一個答案,已確定有6道題的答案是正確的,而其余題中,有兩道題都可判斷出兩個選項是錯誤的有一道題可以判斷一個選項是錯誤的,還有一道題因不理解題意只能亂猜,試求出該考生:
(Ⅰ)得45分的概率;
(Ⅱ)所得分?jǐn)?shù)ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)$y=\frac{cos6x}{{{2^x}-{2^{-x}}}}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.2011年,國際數(shù)學(xué)協(xié)會正式宣布,將每年的3月14日設(shè)為國際數(shù)學(xué)節(jié),來源則是中國古代數(shù)學(xué)家祖沖之的圓周率.祖沖之,在世界數(shù)學(xué)史上第一次將圓周率(π)值計算到小數(shù)點(diǎn)后的第7位,即3.1415926到3.1415927之間,數(shù)列{an}是公差大于0的等差數(shù)列,其前三項是“31415926”中連續(xù)的三個數(shù),數(shù)列{bn}是等比數(shù)列,其公比大于1的正整數(shù)且前三項是“31415926”中的三個數(shù),且a3=b3
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)cn=$\left\{\begin{array}{l}{\frac{32}{({a}_{n}+3)•({a}_{n+2}+3)},n=2k-1(k∈N*)}\\{lo{g}_{3}_{n+1},n=2k(k∈N*)}\end{array}\right.$,求c1+c2+c3+…+c${\;}_{{2}^{n}}$.(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1(a,b>0)$,過x軸上點(diǎn)P的直線與雙曲線的右支交于M,N兩點(diǎn)(M在第一象限),直線MO交雙曲線左支于點(diǎn)Q(O為坐標(biāo)原點(diǎn)),連接QN.若∠MPO=60°,∠MNQ=30°,則該雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案