A. | ${a_n}={({\frac{1}{2}})^n},{b_n}={({\frac{2}{3}})^n}$ | B. | ${a_n}={({\frac{1}{3}})^n},{b_n}=\frac{n}{{{n^2}+1}}$ | ||
C. | ${a_n}=\frac{n-1}{n},{b_n}=1+{({\frac{1}{3}})^n}$ | D. | ${a_n}=\frac{n+3}{n+2},{b_n}=\frac{n+2}{n+1}$ |
分析 直接利用已知條件,判斷選項(xiàng)是否滿(mǎn)足兩個(gè)條件即可.
解答 解:由題意,對(duì)于A,${a_n}={({\frac{1}{2}})^n},{b_n}={({\frac{2}{3}})^n}$,an+1<an,∴[an+1,bn+1]?[an,bn](n∈N*)不成立,所以A不正確;
對(duì)于B,an+1<an,∴[an+1,bn+1]?[an,bn](n∈N*)不成立,所以B不正確;
對(duì)于C,∵an+1>an,bn>bn+1,∴[an+1,bn+1]?[an,bn](n∈N*)成立,并且$\lim_{n→+∞}({{b_n}-{a_n}})=0$,所以C正確;
對(duì)于D,∵an+1<an,bn>bn+1,∴[an+1,bn+1]?[an,bn](n∈N*)不成立,所以D不正確;
故選:C.
點(diǎn)評(píng) 本題考查數(shù)列的極限,數(shù)列的單調(diào)性的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | π | B. | $\frac{3π}{4}$ | C. | $\frac{3π}{2}$ | D. | $\frac{5π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,4) | B. | (-4,4] | C. | (-∞,-4)∪[2,+∞) | D. | [-4,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com