【題目】已知△ABC的角A、B、C所對(duì)的邊分別是a、b、c,設(shè)向量 ,
(1)若 ,求證:△ABC為等腰三角形;
(2)若 ,邊長c=2,角C= ,求△ABC的面積.

【答案】
(1)證明:∵m∥n

∴asinA=bsinB

即a =b .其中R為△ABC外接圓半徑.

∴a=b

∴△ABC為等腰三角形


(2)解:由題意,mp=0

∴a(b﹣2)+b(a﹣2)=0

∴a+b=ab

由余弦定理4=a2+b2﹣2abcos

∴4=a2+b2﹣ab=(a+b)2﹣3ab

∴(ab)2﹣3ab﹣4=0

∴ab=4或ab=﹣1(舍去)

∴SABC= absinC

= ×4×sin =


【解析】(1)利用向量平行的條件,寫出向量平行坐標(biāo)形式的條件,得到關(guān)于三角形的邊和角之間的關(guān)系,利用余弦定理變形得到三角形是等腰三角形.(2)利用向量垂直數(shù)量積為零,寫出三角形邊之間的關(guān)系,結(jié)合余弦定理得到求三角形面積所需的兩邊的乘積的值,求出三角形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱所有棱長都是2,D棱AC的中點(diǎn),E是棱的中點(diǎn),AE交于點(diǎn)H.

(1)求證:平面;

(2)求二面角的余弦值;

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列4個(gè)命題,其中正確的命題序號(hào)為(
①|(zhì)x+ |的最小值是2 的最小值是2 ③log2x+logx2的最小值是2 ④3x+3x的最小值是2.
A.①②③
B.①②④
C.②③④
D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形中, , ,四邊形為矩形, ,平面平面,點(diǎn)為線段中點(diǎn).

(Ⅰ)求異面直線所成的角的正切值;

(Ⅱ)求證:平面平面;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù):

1

2

3

4

5

2

3

6

9

10

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為200噸標(biāo)準(zhǔn)煤,試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓.

(1)若橢圓的右焦點(diǎn)坐標(biāo)為,求的值;

(2)由橢圓上不同三點(diǎn)構(gòu)成三角形稱為橢圓的內(nèi)接三角形.若以為直角頂點(diǎn)的橢圓的內(nèi)接等腰直角三角形恰有三個(gè),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和 (n為正整數(shù)).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令 ,Tn=c1+c2+…+cn , 求Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)正方體的展開圖,如果將它還原為正方體,那么NC、DE、AF、BM這四條線段所在的直線是異面直線的有多少對(duì)?試以其中一對(duì)為例進(jìn)行證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=-x2+2x-3.

(1)求f(x)在區(qū)間[2a-1,2]上的最小值g(a);

(2)求g(a)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案