【題目】已知數(shù)列{an}的前n項(xiàng)和 (n為正整數(shù)).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令 ,Tn=c1+c2+…+cn , 求Tn的值.
【答案】
(1)解:在 中,
令n=1,可得S1=﹣a1﹣1+2=a1,
即
當(dāng)n≥2時(shí), ,
∴ ,
∴ .
∵bn=2nan,∴bn=bn﹣1+1,
即當(dāng)n≥2時(shí),bn﹣bn﹣1=1.
又b1=2a1=1,
∴數(shù)列{bn}是首項(xiàng)和公差均為1的等差數(shù)列.
于是bn=1+(n﹣1)1=n=2nan,
∴
(2)解:由(1)得 ,
所以
由①﹣②得
【解析】(1)在 中,令n=1,得 .當(dāng)n≥2時(shí), ,所以 ,由bn=2nan , 知bn=bn﹣1+1,即當(dāng)n≥2時(shí),bn﹣bn﹣1=1.由此能求出數(shù)列{an}的通項(xiàng)公式.(2)由 ,知 ,由錯(cuò)位相減法能夠求出Tn的值.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用等比數(shù)列的前n項(xiàng)和公式和數(shù)列的前n項(xiàng)和,掌握前項(xiàng)和公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與18秒之間,將測(cè)試結(jié)果按如下方式分成五組:第一組,第二組,…,第五組,如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖,估計(jì)這50名學(xué)生百米測(cè)試成績(jī)的中位數(shù)和平均數(shù)(精確到0.1).
(Ⅱ)若從第一、五組中隨機(jī)取出三名學(xué)生成績(jī),設(shè)取自第一組的個(gè)數(shù)為,求的分布列,期望及方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),圓,過(guò)點(diǎn)的動(dòng)直線與圓交于兩點(diǎn),線段的中點(diǎn)為為坐標(biāo)原點(diǎn).
(1)求的軌跡方程;
(2)當(dāng)時(shí),求的方程及的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的角A、B、C所對(duì)的邊分別是a、b、c,設(shè)向量 , , .
(1)若 ∥ ,求證:△ABC為等腰三角形;
(2)若 ⊥ ,邊長(zhǎng)c=2,角C= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè):實(shí)數(shù)滿足,其中; :實(shí)數(shù)滿足.
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且().
(1)求的通項(xiàng)公式;
(2)設(shè), , 是數(shù)列的前項(xiàng)和,求正整數(shù),使得對(duì)任意均有恒成立;
(3)設(shè), 是數(shù)列的前項(xiàng)和,若對(duì)任意均有恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD﹣A1B1C1D1是正方體,E,F(xiàn),G,H,M,N分別是所在棱的中點(diǎn),則下列結(jié)論錯(cuò)誤的有
①GH和MN是平行直線;GH和EF是相交直線
②GH和MN是平行直線;MN和EF是相交直線
③GH和MN是相交直線;GH和EF是異面直線
④GH和EF是異面直線;MN和EF也是異面直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lg(x2﹣5x+6)和的定義域分別是集合A、B,
(1)求集合A,B;
(2)求集合A∪B,A∩B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn)O(0,0),A(3,0),動(dòng)點(diǎn)P到定點(diǎn)O距離與到定點(diǎn)A的距離的比值是 .
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程,并說(shuō)明方程表示的曲線;
(Ⅱ)當(dāng)λ=4時(shí),記動(dòng)點(diǎn)P的軌跡為曲線D.F,G是曲線D上不同的兩點(diǎn),對(duì)于定點(diǎn)Q(﹣3,0),有|QF||QG|=4.試問(wèn)無(wú)論F,G兩點(diǎn)的位置怎樣,直線FG能恒和一個(gè)定圓相切嗎?若能,求出這個(gè)定圓的方程;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com