已知函數(shù)
(Ⅰ)求在點處的切線方程;
(Ⅱ)若存在,滿足成立,求的取值范圍;
(Ⅲ)當時,恒成立,求的取值范圍.
(1) (2) <
(3)
解析試題分析:解:(Ⅰ)
在處的切線方程為:
即 3分
(Ⅱ) 即 令
時, ,時,
在上減,在上增
又時,的最大值在區(qū)間端點處取到.
在上最大值為,
故的取值范圍是:<. 8分
(Ⅲ)由已知得時恒成立,設
由(Ⅱ)知,當且僅當時等號成立,
故從而當
即時,,為增函數(shù),又
于是當時, 即 時符合題意。11分
由可得,從而當時,
故當時,,為減函數(shù),又,
于是當時, 即
故,不符合題意.
綜上可得的取值范圍為 14分
考點:導數(shù)的運用
點評:解決的關鍵是利用導數(shù)的幾何意義求解切線方程以及根據(jù)導數(shù)的符號判定函數(shù)單調性,得到函數(shù)的最值,屬于基礎題。
科目:高中數(shù)學 來源: 題型:解答題
對于區(qū)間上有意義的兩個函數(shù)如果有任意,均有則稱與在上是接近的,否則稱與在上是非接近的.現(xiàn)有兩個函數(shù)與給定區(qū)間, 討論與在給定區(qū)間上是否是接近的.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),當時函數(shù)取得一個極值,其中.
(Ⅰ)求與的關系式;
(Ⅱ)求的單調區(qū)間;
(Ⅲ)當時,函數(shù)的圖象上任意一點的切線的斜率恒大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若時,取得極值,求實數(shù)的值;
(2)求在上的最小值;
(3)若對任意,直線都不是曲線的切線,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)f (x)的定義域為M,具有性質P:對任意x∈M,都有f (x)+f (x+2)≤2f (x+1).
(1)若M為實數(shù)集R,是否存在函數(shù)f (x)=ax (a>0且a≠1,x∈R) 具有性質P,并說明理由;
(2)若M為自然數(shù)集N,并滿足對任意x∈M,都有f (x)∈N. 記d(x)=f (x+1)-f (x).
(ⅰ) 求證:對任意x∈M,都有d(x+1)≤d(x)且d(x)≥0;
(ⅱ) 求證:存在整數(shù)0≤c≤d(1)及無窮多個正整數(shù)n,滿足d(n)=c.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com