18.已知等差數(shù)列{an}中,a7+a9=16,S11=66,則a12的值是12.

分析 利用等差數(shù)列的通項公式與求和公式即可得出.

解答 解:設等差數(shù)列{an}的公差為d,∵a7+a9=16,S11=66,
∴2a1+14d=16,11a1+$\frac{11×10}{2}$d=66,
∴a1=d=1,
則a12=1+(12-1)×1=12,
故答案為:12.

點評 本題考查了等差數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.下列結論中正確的個數(shù)有(  )
①冪函數(shù)圖象一定過原點
②當α<0時,冪函數(shù)是減函數(shù)
③當α>0時,冪函數(shù)是增函數(shù)
④函數(shù)y=2x2即是二次函數(shù),又是冪函數(shù).
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知θ是第四象限角,則$\sqrt{{{sin}^2}θ-{{sin}^4}θ}$可化簡為( 。
A.$\frac{1}{2}sin2θ$B.$-\frac{1}{2}sin2θ$C.sin2θD.-sin2θ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,已知在△ABC中有內切圓⊙O,分別切三邊于K、L、M,⊙O的面積為27π,∠MKL=60°,BC:AC=8:5.求:
(1)∠C的度數(shù);
(2)△ABC的三邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知直線l:y=k(x+1)-$\sqrt{3}$與圓x2+y2=(2$\sqrt{3}$)2交于A、B兩點,過A、B分別作l的垂線與x軸交于C、D兩點,若|AB|=4$\sqrt{3}$,則|CD|=$8\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.“四邊形四條邊相等”是“四邊形是正方形”的必要不充分條件.(從“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中選出一個填寫)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設O為坐標原點,P是以F為焦點的拋物線y2=2px(p>0)上任意一點,M是線段PF上的點,且|PM|=2|MF|,則直線OM的斜率的最大值為$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=2sin(?x+φ)對任意x都有f(${\frac{π}{6}$+x)=f(${\frac{π}{6}$-x),則|f(${\frac{π}{6}}$)|=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=ln(x2+1)的值域為{0,1,2},則滿足這樣條件的函數(shù)的個數(shù)9個.

查看答案和解析>>

同步練習冊答案