A. | 2 | B. | 4 | C. | 6 | D. | 0 |
分析 由題意可得DE=4,AE=2,CF=4,BF=2,分類討論P點的位置,分別求得$\overrightarrow{PE}$•$\overrightarrow{PF}$的范圍,從而得出結(jié)論
解答 解:由正方形ABCD的邊長為6,點E,F(xiàn)分別在邊AD,BC上,且DE=2AE,CF=2BF,
可得DE=4,AE=2,CF=4,BF=2.
若P在AB上,$\overrightarrow{PE}•\overrightarrow{PF}=(\overrightarrow{PA}+\overrightarrow{AE})(\overrightarrow{PB}+\overrightarrow{BF})=\overrightarrow{PA}•\overrightarrow{PB}+\overrightarrow{AE}•\overrightarrow{BF}∈[-5,4]$;
若P在CD上,$\overrightarrow{PE}•\overrightarrow{PF}=(\overrightarrow{PD}+\overrightarrow{DE})(\overrightarrow{PC}+\overrightarrow{CF})=\overrightarrow{PD}•\overrightarrow{PC}+\overrightarrow{DE}•\overrightarrow{CF}∈[7,16]$;
若P在AE上,$\overrightarrow{PE}•\overrightarrow{PF}=\overrightarrow{PE•(}\overrightarrow{PA}+\overrightarrow{AB}+\overrightarrow{BF})=\overrightarrow{PE}•\overrightarrow{PA}+\overrightarrow{PE}•\overrightarrow{BF}∈[0,4]$;
同理,P在BF上時也有$\overrightarrow{PE}•\overrightarrow{PF}∈[0,4]$;
若P在DE上,$\overrightarrow{PE}•\overrightarrow{PF}=\overrightarrow{PE•(}\overrightarrow{PD}+\overrightarrow{DC}+\overrightarrow{CF})=\overrightarrow{PE}•\overrightarrow{PD}+\overrightarrow{PE}•\overrightarrow{CF}∈[0,16]$;
同理,P在CF上時也有$\overrightarrow{PE}•\overrightarrow{PF}∈[0,16]$,
所以,綜上可知當λ∈(7,16)時,有且只有4個不同的點P使得$\overrightarrow{PE}$•$\overrightarrow{PF}$=λ成立.
故選:B
點評 本題主要考查兩個向量的加減法及其幾何意義,兩個向量的數(shù)量積公式,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | -$\frac{1}{3}$ | C. | -$\frac{3}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源:2015-2016學年江蘇泰興中學高二上學期期末數(shù)學(理)試卷(解析版) 題型:填空題
過橢圓的左頂點作斜率為的直線交橢圓于點,交軸于點,為中點,定點滿足:對于任意的都有,則點的坐標為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com