分析 (1)把已知的兩等式變形后,根據(jù)兩角和的正切函數(shù)公式及誘導(dǎo)公式化簡(jiǎn),分別根據(jù)A和C的范圍,利用特殊角的三角函數(shù)值即可求出A的度數(shù).
(2)由正弦定理可求sinB,利用大邊對(duì)大角及特殊角的三角函數(shù)值可求B,進(jìn)而利用兩角差的正弦函數(shù)公式可求sinC的值,利用三角形面積公式即可計(jì)算得解.
解答 解:(1)∵tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$,且A+B+C=180°,
∴$\frac{tanB+tanC}{1-tanBtanC}$=$\sqrt{3}$,即tan(B+C)=-tanA=$\sqrt{3}$,
∴tanA=-$\sqrt{3}$,
∵0°<A<180°,
∴∠A=120°.
(2)∵a=$\sqrt{3}$,b=$\sqrt{2}$,∠A=120°.
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{2}×\frac{\sqrt{3}}{2}}{\sqrt{3}}$=$\frac{\sqrt{2}}{2}$,結(jié)合b<a,可得B=45°,
∴sinC=sin(60°-45°)=$\frac{\sqrt{3}}{2}×\frac{\sqrt{2}}{2}$-$\frac{1}{2}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×\sqrt{3}×\sqrt{2}×$$\frac{\sqrt{6}-\sqrt{2}}{4}$=$\frac{3-\sqrt{3}}{4}$.
點(diǎn)評(píng) 此題主要考查了兩角和與差的正切函數(shù)公式、誘導(dǎo)公式、特殊角的三角函數(shù)值,以及大邊對(duì)大角,正弦定理,三角形面積公式在解三角形中的應(yīng)用,其中靈活運(yùn)用公式把已知的兩等式進(jìn)行三角函數(shù)的恒等變形,得到A的度數(shù),進(jìn)而得到C的度數(shù)是解本題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
步數(shù)(千卡) | 16 | 17 | 18 | 19 |
消耗能量(卡路里) | 400 | 440 | 480 | 520 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2-m | B. | 4 | C. | 2m | D. | -m+4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com