【題目】如圖,四邊形為菱形,四邊形為平行四邊形,設與相交于點, .
(1)證明:平面平面;
(2)若與平面所成角為60°,求二面角的余弦值.
【答案】(1)見解析;(2).
【解析】試題分析:(1)根(1)要證面面垂直,需要找線面垂直,本題中重點分析線段,利用條件底面是菱形可得,通過全等可知,從而,故是平面的垂線,從而得證;(2)涉及二面角的計算,一般需要建系設點,計算平面的法向量,利用二面角與法向量夾角之間的關系處理,需要注意建系時分析清楚哪三條線互相垂直.
試題解析:
(1)證明:連接,
∵四邊形為菱形,
∵,
在和中,
, ,
∴,
∴,
∴,
∵,
∴平面,
∵平面,
∴平面平面;
(2)
解法一:過作垂線,垂足為,連接,易得為與面所成的角,
∴,
∵,
∴平面,
∴為二面角的平面角,
可求得,
在中由余弦定理可得: ,
∴二面角的余弦值為;
解法二:如圖,在平面內(nèi),過作的垂線,交于點,由(1)可知,平面平面,
∴平面,
∴直線兩兩互相垂直,
分別為軸建立空間直角坐標系,
易得為與平面所成的角,∴,
則,
,
設平面的一個法向量為,則
且,
∴,且
取,可得平面的一個法向量為,
同理可求得平面的一個法向量為,
∴,
∴二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知(),定義.
(1)求函數(shù)的極值
(2)若,且存在使,求實數(shù)的取值范圍;
(3)若,試討論函數(shù)()的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠家擬在2017年舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)(單位:萬件)與年促銷費用(單位:萬元)()滿足( 為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件.已知2017年生產(chǎn)該產(chǎn)品的固定投入為8萬元.每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將2017年該產(chǎn)品的利潤(單位:萬元)表示為年促銷費用(單位:萬元)的函數(shù);
(2)該廠家2017年的促銷費用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知: 、 、 是同一平面上的三個向量,其中 =(1,2).
(1)若| |=2 ,且 ∥ ,求 的坐標.
(2)若| |= ,且 +2 與2 ﹣ 垂直,求 與 的夾角θ
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】運貨卡車以每小時千米的速度勻速行駛千米().假設汽油的價格是每升元,而汽車每小時耗油升,司機的工資是每小時元.
(1)求這次行車總費用關于的表達式;
(2)當為何值時,這次行車的總費用最低?并求出最低費用的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若,求在點處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)若存在兩個極值點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓與圓,點在圓上,點在圓上.
(1)求的最小值;
(2)直線上是否存在點,滿足經(jīng)過點由無數(shù)對相互垂直的直線和,它們分別與圓和圓相交,并且直線被圓所截得的弦長等于直線被圓所截得的弦長?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確的是( )
A.單位向量都相等
B.若 與 是共線向量, 與 是共線向量,則 與 是共線向量
C.| + |=| ﹣ |,則 =0
D.若 與 是單位向量,則 =1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com