2.已知x>-1,則x+$\frac{4}{x+1}$的最小值為3.

分析 由題意可得x+1>0,可得x+$\frac{4}{x+1}$=(x+1)+$\frac{4}{x+1}$-1,運用基本不等式即可得到所求最小值,注意等號成立的條件.

解答 解:∵x>-1,∴x+1>0,
∴x+$\frac{4}{x+1}$=(x+1)+$\frac{4}{x+1}$-1
≥2$\sqrt{(x+1)•\frac{4}{x+1}}$-1=3,
當且僅當x+1=$\frac{4}{x+1}$,即x=1(-3舍去)時取等號,
∴x+$\frac{4}{x+1}$的最小值為3,
故答案為:3.

點評 本題考查運用基本不等式求最值,整體變形為可用基本不等式的形式是解決問題的關鍵,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.6個標有不同編號的乒乓球放在兩頭有蓋的棱柱型紙盒中,正視圖如圖所示,若隨機從一頭取出一個乒乓球,分6次取完,并依次排成一行,則不同的排法種數(shù)是32(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖,點P等可能分布在菱形ABCD內,則$\overrightarrow{AP}•\overrightarrow{AC}≤\frac{1}{4}{\overrightarrow{AC}^2}$的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若直線l1:mx+2y+1=0與直線l2:x+y-2=0互相垂直,則實數(shù)m的值為( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.閱讀右邊的程序框圖,運行相應的程序,輸出的結果為( 。
A.17B.10C.9D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知直線l的參數(shù)方程為 $\left\{\begin{array}{l}{x=1+t}\\{y=3-2t}\end{array}\right.$(t是參數(shù)),以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程是ρ=4sinθ.
(1)求圓C的直角坐標方程;
(2)已知點P的直角坐標為(2,1)直線l與圓C交于A,B兩點,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.求與直線x+y-1=.0相切,且半徑為3的動圓的圓心的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.若實數(shù)x0滿足p(x0)=x0,則稱x=x0為函數(shù)p(x)的不動點.
(1)求函數(shù)f(x)=lnx+1的不動點;
(2)設函數(shù)g(x)=ax3+bx2+cx+3,其中a,b,c為實數(shù).
①若a=0時,存在一個實數(shù)${x_0}∈[\frac{1}{2},2]$,使得x=x0既是g(x)的不動點,又是g'(x)的不動點(g'(x)是函數(shù)g(x)的導函數(shù)),求實數(shù)b的取值范圍;
②令h(x)=g'(x)(a≠0),若存在實數(shù)m,使m,h(m),h(h(m)),h(h(h(m)))成各項都為正數(shù)的等比數(shù)列,求證:函數(shù)h(x)存在不動點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.對于函數(shù)f(x)=x2+$\frac{a}{x}$,下列結論正確的是( 。
A.?a∈R,函數(shù)f(x)是奇函數(shù)B.?a∈R,函數(shù)f(x)是偶函數(shù)
C.?a>0,函數(shù)f(x)在(-∞,0)上是減函數(shù)D.?a>0,函數(shù)f(x)在(0,+∞)上是減函數(shù)

查看答案和解析>>

同步練習冊答案