分析 (1)由圓C的極坐標(biāo)ρ=4sinθ 根據(jù)x=ρcosθ、y=ρsinθ化為直角坐標(biāo)方程.
(2)由題意可得直線的方程為$\left\{\begin{array}{l}{x=2+\frac{1}{\sqrt{5}}t′}\\{y=1-\frac{2}{\sqrt{5}}t′}\end{array}\right.$(t′是參數(shù)),代入曲線方程化簡(jiǎn)求得t′1t2′=1,可得|PA|•|PB|=|t1′|•|t2′|的值.
解答 解:(1)由圓C的極坐標(biāo)ρ=4sinθ,即 ρ2=4ρsinθ,可得直角坐標(biāo)方程為 x2+(y-2)2=4,
表示以(0,2)為圓心、半徑等于2的圓.
(2)由直線l過(guò)點(diǎn)P(2,1),可得直線的方程為$\left\{\begin{array}{l}{x=2+\frac{1}{\sqrt{5}}t′}\\{y=1-\frac{2}{\sqrt{5}}t′}\end{array}\right.$(t′是參數(shù)),
把直線方程代入曲線方程化簡(jiǎn)可得$t{′}^{2}+\frac{8\sqrt{5}}{5}t′+1$=0
設(shè)A、B對(duì)應(yīng)的參數(shù)分別為t′1、t′2,則t′1t2′=1,∴|PA|•|PB|=|t1′|•|t2′|=1.
點(diǎn)評(píng) 本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,直線的參數(shù)方程,參數(shù)的幾何意義,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 與ω有關(guān),且與ϕ有關(guān) | B. | 與ω有關(guān),但與ϕ無(wú)關(guān) | ||
C. | 與ω?zé)o關(guān),且與ϕ無(wú)關(guān) | D. | 與ω?zé)o關(guān),但與ϕ有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | b>c>a | B. | c>b>a | C. | c>a>b | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com