6.已知幾何體的三視圖如圖,
①指出該幾何體形狀;
②求它的表面積和體積.

分析 (1)由三視圖中有兩個矩形,一個三角形,可得該幾何體是三棱柱;
(2)根據(jù)棱柱的表面積和體積的計算公式,代入計算,可得答案.

解答 解:(1)由三視圖中有兩個矩形,一個三角形,可得該幾何體是三棱柱;
(2)S=2×S+S側(cè)=2×$\frac{1}{2}$×1×$\sqrt{2}$+$(1+\sqrt{2}+\sqrt{3})×\sqrt{2}$=2+2$\sqrt{2}+\sqrt{6}$;
V=Sh=$\frac{\sqrt{2}}{2}×\sqrt{2}$=1.

點評 本題考查的知識點是棱柱的體積及表面積,三視圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某校教務(wù)處要對高三上學(xué)期期中數(shù)學(xué)試卷進(jìn)行調(diào)研,考察試卷中某道填空題的得分情況.已知該題有兩空,第一空答對得3分,答錯或不答得0分;第二空答對得2分,答錯或不答得0分.第一空答對與否與第二空答對與否是相互獨立的.從該校1468份試卷中隨機抽取1000份試卷,其中該題的得分組成容量為1000的樣本,統(tǒng)計結(jié)果如下表:
第一空得分情況第二空得分情況
得分03得分02
人數(shù)198802人數(shù)698302
(1)求樣本試卷中該題的平均分,并據(jù)此估計該校高三學(xué)生該題的平均分.
(2)該校的一名高三學(xué)生因故未參加考試,如果這名學(xué)生參加考試,以樣本中各種得分情況的頻率(精確到0.1)作為該同學(xué)相應(yīng)的各種得分情況的概率.試求該同學(xué)這道題得分ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2x2-1.
(1)用定義證明f(x)在(-∞,0]上是減函數(shù);
(2)作出函數(shù)f(x)=2x2-1,x∈[-1,2]的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)不等式組$\left\{\begin{array}{l}{x+y-2≤0}\\{x≥0}\\{y≥0}\end{array}\right.$表示的平面區(qū)域為D,在區(qū)域D內(nèi)隨機取一點P,則點P落在圓x2+y2=1內(nèi)的概率為$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=alnx(a>0),e為自然對數(shù)的底數(shù).
(1)當(dāng)x>0時,求證:f(x)≥a(1-$\frac{1}{x}$);
(2)在區(qū)間(1,e)上$\frac{f(x)}{x-1}$>1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x+1|+|mx-1|.
(1)若m=1,求f(x)的最小值,并指出此時x的取值范圍;
(2)若f(x)≥2x,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{2x+1}{{x}^{2}},x<-\frac{1}{2}}\\{x+1,x≥-\frac{1}{2}}\end{array}\right.$,g(x)=x2-4x-4,若存在實數(shù)a使得f(a)+g(b)=0,則實數(shù)b的取值范圍是[-1,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知一組數(shù)據(jù)x1,x2,…,xn的平均值為2,方差為1,則2x1+1,2x2+1,…,2xn+1平均值方差分別為( 。
A.5,4B.5,3C.3,5D.4,5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)集合A={x|0≤x≤2},B={y|1≤y≤2},若對于函數(shù)y=f(x),其定義域為A,值域為B,則這個函數(shù)的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案