分析 (1)將直線直l的參數(shù)方程$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t,即可化為普通方程,將$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入$\sqrt{3}x-y-2\sqrt{3}$=0可得極坐標(biāo)方程.
(2)C曲線C的極坐標(biāo)方程為:ρ=4cosθ,即ρ2=4ρcosθ,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$化為普通方程,與直線方程聯(lián)立可得交點坐標(biāo),再化為極坐標(biāo)即可.
解答 解:(1)將直線直l的參數(shù)方程$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t,化為普通方程$\sqrt{3}x-y-2\sqrt{3}$=0,
將$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入$\sqrt{3}x-y-2\sqrt{3}$=0得$\sqrt{3}ρcosθ-ρsinθ-2\sqrt{3}$=0.
(2)C曲線C的極坐標(biāo)方程為:ρ=4cosθ,即ρ2=4ρcosθ,
化為普通方程為x2+y2-4x=0.
聯(lián)立$\left\{\begin{array}{l}{\sqrt{3}x-y-2\sqrt{3}=0}\\{{x}^{2}+{y}^{2}-4x=0}\end{array}\right.$解得:$\left\{\begin{array}{l}{x=1}\\{y=-\sqrt{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=3}\\{y=\sqrt{3}}\end{array}\right.$,
∴l(xiāng)與C交點的極坐標(biāo)分別為:$(2,\frac{5π}{3})$,$(2\sqrt{3},\frac{π}{6})$.
點評 本題考查了參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程、直線與圓的交點,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com