計算下列各式的值
(1)[(3
3
8
)
-
2
3
-(5
4
9
)
0.5
+(0.008)-
2
3
÷(0.02)-
1
2
×(0.32)
1
2
]÷0.062 50.25;
(2)2(lg
2
2+lg
2
•lg5+
lg
2
2
-lg2+1
考點:對數(shù)的運算性質(zhì),根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡運算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用指數(shù)的運算法則即可得出.
(2)利用對數(shù)的運算法則即可得出.
解答: 解:(1)原式=[(
3
2
)3×(-
2
3
)
-(
7
3
)
1
2
+0.23×(-
2
3
)
×0.02
1
2
×0.32
1
2
]
÷0.252×0.25
=[
4
9
-
7
3
+25×0.08]
×2
=
2
9

(2)原式
1
2
lg22
+
1
2
lg2•lg5
+1
=
1
2
lg2+1.
點評:本題考查了指數(shù)與對數(shù)的運算法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓心在直線2x+y=0上的圓C,經(jīng)過點A(2,-1),并且與直線x+y-1=0相切
(1)求圓C的方程;
(2)圓C被直線l:y=k(x-2)分割成弧長的比值為
1
2
的兩段弧,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓F1:x2+(y+1)2=1,圓F2:x2+(y-1)2=9,若動圓C與圓F1外切,且與圓F2內(nèi)切,則動圓圓心C的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD,側(cè)面PAD是邊長為2的正三角形,且與底面垂直,底面ABCD是∠ABC=60°的菱形,M為PC的中點.
(Ⅰ) 求證:PC⊥AD;
(Ⅱ) 在棱PB上是否存在一點Q,使得A,Q,M,D四點共面?若存在,指出點Q的位置并證明;若不存在,請說明理由;
(Ⅲ) 求點D到平面PAM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間[0,1]上的函數(shù)y=f(x)的圖象如圖所示,對于滿足0<x1<x2<1的任意x1,x2,給出下列結(jié)論:
①f(x2)-f(x1)>x2-x1;
②x2f(x1)>x1f(x2);
f(x1)+f(x2)
2
<f(
x1+x2
2
)

f(x2)-f(x1)
x2-x1
>0.
其中正確結(jié)論的序號是
 
.(把所有正確結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)為一次函數(shù),若f(2x-1)+2f(3x+4)=2x+1,求f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,直角梯形ABCD中AB∥CD,∠ADC=90°,點M,N分別在線段AB,CD上,且MN⊥AB,BC=1,MB=2,∠CBM=60°,現(xiàn)將梯形ABCD沿MN折起,使DN⊥NC,如圖2.
(Ⅰ)求證:平面AMND⊥平面MNCB;
(Ⅱ)當(dāng)直線DB與平面MNCB所成角的大小為30°時,求三棱錐C-DNB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,DA=AB=1,BC=2,點P在陰影區(qū)域(含邊界)中運動,則有
PA
BD
的取值范圍是( 。
A、[-
1
2
,1]
B、[-1,
1
2
]
C、[-1,1]
D、[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系中有兩個頂點A(-2,0),B(2,0),若動點P滿足|PA|+|PB|=6,則動點P的軌跡方程為
 

查看答案和解析>>

同步練習(xí)冊答案