6.函數(shù)y=x3+ln($\sqrt{{x}^{2}+1}$-x)的圖象大致為( 。
A.B.C.D.

分析 確定函數(shù)是奇函數(shù),利用f(1)=0,f(2)=8+ln($\sqrt{5}$-2)>0,即可得出結(jié)論.

解答 解:由題意,f(-x)=(-x)3+ln($\sqrt{{x}^{2}+1}$+x)=-f(x),函數(shù)是奇函數(shù),
f(1)=0,f(2)=8+ln($\sqrt{5}$-2)>0,
故選B.

點評 本題考查函數(shù)的奇偶性,考查函數(shù)的圖象,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.“|a|>|b|”是“l(fā)na>lnb”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)在其定義域上既是奇函數(shù)又是減函數(shù)的是( 。
A.f(x)=-x|x|B.f(x)=xsinxC.$f(x)=\frac{1}{x}$D.$f(x)={x^{\frac{1}{2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)集合A={x|x2-3x<0},B={x|x>2},則A∩∁RB=( 。
A.{x|-2≤x<3}B.{x|0<x≤2}C.{x|-2≤x<0}D.{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合U={-1,0,1},B={x|x=m2,m∈U},則∁UB=(  )
A.{0,1}B.{-1,0,1}C.D.{-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若α、β∈R,則“α≠β”是“tanα≠tanβ”成立的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.國內(nèi)某知名連鎖店分店開張營業(yè)期間,在固定的時間段內(nèi)消費達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎活動,隨著抽獎活動的有效開展,參加抽獎活動的人數(shù)越來越多,該分店經(jīng)理對開業(yè)前7天參加抽獎活動的人數(shù)進(jìn)行統(tǒng)計,y表示開業(yè)第x天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
 x 1 2 3 4 5 6 7
 y 510 14 15 17 
經(jīng)過進(jìn)一步統(tǒng)計分析,發(fā)現(xiàn)y與x具有線性相關(guān)關(guān)系.
(Ⅰ)若從這7天隨機(jī)抽取兩天,求至少有1天參加抽獎人數(shù)超過10的概率;
(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=bx+$\stackrel{∧}{a}$,并估計若該活動持續(xù)10天,共有多少名顧客參加抽獎.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$,$\sum_{i-1}^{7}{x}_{i}^{2}$=140,$\sum_{i=1}^{7}{x}_{i}{y}_{i}$=364.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)={e^x}-\frac{1}{2}{x^2}$.設(shè)l為曲線y=f(x)在點P(x0,f(x0))處的切線,其中x0∈[-1,1].
(Ⅰ)求直線l的方程(用x0表示);
(Ⅱ)設(shè)O為原點,直線x=1分別與直線l和x軸交于A,B兩點,求△AOB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線M:y=x2,圓N:x2+(y-2)2=1.
(1)過點A(1,1)作圓N的切線交拋物線M于點B,求點B的坐標(biāo);
(2)過點A(a,a2)(a≠±1)作圓N的兩條切線AB,AC交拋物線M于點B,C,連接BC,判斷直線BC與圓N的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案