4.已知二次函數(shù)f(x)=ax2+bx+c滿足:對所有實數(shù)x都有f(x+1)-f(x)=2x且f(0)=1.
(1)求f(x)的解析式;      
(2)求f(x)在[0,2]上的值域.

分析 (1)二次函數(shù)f(x)=ax2+bx+c代入f(x+1)-f(x)=2x,根據(jù)系數(shù)對應(yīng)相等可求a,b,而f(0)=1,進而可求f(x);
(2)利用配方法,結(jié)合函數(shù)的單調(diào)性,即可求f(x)在[0,2]上的值域.

解答 解:(1):∵f(x)=ax2+bx+c,
∴f(x+1)-f(x)=a(x+1)2+b(x+1)+c-(ax2+bx+c)=2ax+a+b=2x,
∴$\left\{\begin{array}{l}{2a=2}\\{a+b=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{b=-1}\end{array}\right.$,即f(x)=x2-x+c,
又∵f(0)=1,
∴c=1,則f(x)=x2-x+1;
(2)f(x)=x2-x+1=(x-$\frac{1}{2}$)2+$\frac{3}{4}$,
∴函數(shù)在[0,$\frac{1}{2}$]上單調(diào)遞減,在[$\frac{1}{2}$,2]上單調(diào)遞增,
∴f(x)min=$\frac{3}{4}$,f(x)max=3,
∴$f(x)在[0,2]上的值域為[\frac{3}{4},3]$.

點評 本題主要考查了利用待定系數(shù)法求解二次函數(shù)的解析式,以及函數(shù)的恒成立與函數(shù)的最值求解的相互轉(zhuǎn)化,主要涉及單調(diào)性在函數(shù)的最值求解中的應(yīng)用.屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知F1,F(xiàn)2分別為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,點P在橢圓上,△POF2是面積為$\sqrt{3}$的正三角形,則橢圓方程為$\frac{{x}^{2}}{4+2\sqrt{3}}$+$\frac{{y}^{2}}{2\sqrt{3}}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知cos($\frac{π}{6}$-α)=$\frac{2}{3}$,則sin($\frac{2π}{3}$-α)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=2sin2x+2$\sqrt{3}$sinxcosx-1的圖象關(guān)于(φ,0)對稱,則φ的值可以是( 。
A.$-\frac{π}{6}$B.$\frac{π}{6}$C.$-\frac{π}{12}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$是同一平面內(nèi)的三個向量,其中$\overrightarrow a$=(1,-2).
(1)若$|\overrightarrow c|=2\sqrt{5}$,且$\overrightarrow c∥\overrightarrow a$,求向量$\overrightarrow c$的坐標;
(2)若$|\overrightarrow b|=1$,且$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-2\overrightarrow b$垂直,求$\overrightarrow a$與$\overrightarrow b$的夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若向量$\overrightarrow a$=(1,2),$\overrightarrow$=(1,-1),則2$\overrightarrow a$+$\overrightarrow$與$\overrightarrow a$-$\overrightarrow$的夾角等于( 。
A.-$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.給出以下命題:
(1)若A${\;}_{n}^{3}$=6C${\;}_{n}^{4}$,則n的值為7;
(2)若${∫}_^{a}$f(x)dx>0,則f(x)>0;
(3)導數(shù)為零的點一定是極值點;
(4)若z∈C,且|z+2-2i|=1,則|z|的最小值是2$\sqrt{2}$-1;
其中正確的命題序號為(1)(4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知tanx=2,求下列各式的值:
(1)$\frac{cosx+sinx}{cosx-sinx}$;     
(2)cos2x-sin2x;      
(3)3sinxcosx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.一輛賽車在跑道上高速行駛,如圖反映了它從某時刻開始的15分鐘內(nèi)速度v(x)與時間x的關(guān)系,若定義“速度差函數(shù)”u(x)為時間段[0,x]內(nèi)的最大速度與最小速度的差,則u(x)的圖象可能是( 。
A.B.
C.D.

查看答案和解析>>

同步練習冊答案