2.角α的頂點在坐標原點,始邊與x軸的非負半軸重合,終邊經(jīng)過點P(1,2),則cos(π-α)的值是-$\frac{\sqrt{5}}{5}$.

分析 由條件利用任意角的三角函數(shù)的定義,誘導公式,求得cos(π-α)的值.

解答 解:由于角α的頂點在坐標原點,始邊與x軸的非負半軸重合,終邊經(jīng)過點P(1,2),
可得cosα=$\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$,∴cos(π-α)=-cosα=-$\frac{\sqrt{5}}{5}$,
故答案為:$-\frac{{\sqrt{5}}}{5}$.

點評 本題主要考查任意角的三角函數(shù)的定義,誘導公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知定義域為(0,+∞)的函數(shù)f(x)滿足:(1)對任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)當x∈(1,2]時,f(x)=2-x.給出如下結論:
①對任意m∈Z,有f(2m)=0;②函數(shù)f(x)的值域為[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”的充要條件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”;其中所有正確結論的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知映射f:P→Q是從P到Q的一個函數(shù),則P,Q的元素(  )
A.可以是點B.可以是方程C.必須是實數(shù)D.可以是三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.若函數(shù)f(x)是定義在R上的偶函數(shù),且當x≤0時,f(x)=x2+2x.
(1)寫出函數(shù)f(x)(x∈R)的解析式.
(2)若函數(shù)g(x)=f(x)-4x+2(x∈[1,2]),求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.定義在R上的偶函數(shù)f(x)滿足:對任意的x1,x2∈(-∞,0)(x1≠x2),都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$.則下列結論正確的是( 。
A.$f({log_2}^{\frac{1}{4}})>f({0.2^3})>f(\sqrt{3})$B.$f({log_2}^{\frac{1}{4}})>f(\sqrt{3})>f({0.2^3})$
C.$f(\sqrt{3})>f({0.2^3})>f({log_2}^{\frac{1}{4}})$D.$f({0.2^3})>f(\sqrt{3})>f({log_2}^{\frac{1}{4}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知△ABC是正三角形,若$\overrightarrow{a}$=$\overrightarrow{AC}$-$λ\overrightarrow{AB}$與向量$\overrightarrow{AC}$的夾角大于90°,則實數(shù)λ的取值范圍是(  )
A.(2,+∞)B.(-∞,-2)C.(-∞,-1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.計算:
(1)$\frac{5}{6}{a}^{\frac{1}{3}^{-2}}$×(-3a${\;}^{-\frac{1}{2}}$b-1)÷(4a${\;}^{\frac{2}{3}}$b-3)${\;}^{\frac{1}{2}}$;
(2)log3$\sqrt{27}$+lg4+lg25+6${\;}^{lo{g}_{4}}$2+(-2)0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在△ABC中,a,b,c分別是角A,B,C所對的邊,O為△ABC三邊中垂線的交點.
(1)若b-c=$\frac{1}{4}$a,2sinB=3sinC,求cosA的值;
(2)若b2-2b+c2=0,求$\overrightarrow{BC}$•$\overrightarrow{AO}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知不等式(2x+y)($\frac{a}{x}+\frac{1}{y}$)≥25對任意正實數(shù)x、y恒成立,則正實數(shù)a的最小值為(  )
A.16B.12C.8D.4

查看答案和解析>>

同步練習冊答案