A. | (2,+∞) | B. | (-∞,-2) | C. | (-∞,-1) | D. | (1,+∞) |
分析 首先將三角形的頂點坐標(biāo)化,根據(jù)向量的夾角為鈍角,得到數(shù)量積公式小于0,求出λ范圍.
解答 解:以A為原點,AB所在直線為x軸建立坐標(biāo)系,則A(0,0),B(1,0),C($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),則$\overrightarrow{AC}$=($\frac{1}{2},\frac{\sqrt{3}}{2}$),$\overrightarrow{AB}$=(1,0),
$\overrightarrow{a}$=$\overrightarrow{AC}$-$λ\overrightarrow{AB}$=($\frac{1}{2}-λ$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{a}$與向量$\overrightarrow{AC}$的夾角θ大于90°,
所以cosθ<0,即$\overrightarrow{a}•\overrightarrow{AC}$<0,
所以$\frac{1}{2}(\frac{1}{2}-λ)+\frac{3}{4}<0$,解得λ>2;
故選A.
點評 本題考查了平面向量的數(shù)量積公式的運用;向量夾角為鈍角,則它們的數(shù)量積小于0.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\frac{2}{x}$ | B. | f(x)=log2x | C. | f(x)=($\frac{1}{2}$)x | D. | f(x)=-x2+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | (¬p)∧q | C. | (¬p)∨(¬q) | D. | p∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥-1 | B. | a>1 | C. | a>2 | D. | a≤-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com