【題目】的展開式中,前3項(xiàng)的系數(shù)成等差數(shù)列,

1)求的值;

2)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng)及各項(xiàng)系數(shù)和;

3)求展開式中含的項(xiàng)的系數(shù)及有理項(xiàng).

【答案】12)最大的項(xiàng)為第五項(xiàng),3;;

【解析】

1)根據(jù)前3項(xiàng)的系數(shù)成等差數(shù)列,利用等差數(shù)列的定義求得的值;

2)根據(jù)通項(xiàng)公式、二項(xiàng)式系數(shù)的性質(zhì)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng),令即可求得展開式系數(shù)和;

3)在二項(xiàng)展開式的通項(xiàng)公式中,令的冪指數(shù)等于,求出的值,即可求得含的項(xiàng)的系數(shù).設(shè)展開式中第項(xiàng)為有理項(xiàng),則,當(dāng)、4、8時(shí)對(duì)應(yīng)的項(xiàng)為有理項(xiàng).

解:(1展開式的通項(xiàng)為

因?yàn)榍?/span>3項(xiàng)的系數(shù)成等差數(shù)列,且前三項(xiàng)系數(shù)為,

所以,即

所以(舍去)或.

2)因?yàn)?/span>,所以展開式中二項(xiàng)式系數(shù)最大的項(xiàng)為第五項(xiàng),

.

,即展開式系數(shù)和為

3)通項(xiàng)公式:

,,

可得含的項(xiàng)的系數(shù)為.

設(shè)展開式中第項(xiàng)為有理項(xiàng),由

當(dāng)4、8時(shí)對(duì)應(yīng)的項(xiàng)為有理項(xiàng),有理項(xiàng)分別為:;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:在五面體中,四邊形是正方形,,

.

(1)證明:平面平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的極值;

2)若有兩個(gè)零點(diǎn),,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將楊輝三角中的奇數(shù)換成1,偶數(shù)換成0,便可以得到如圖的“0-1三角”.三角中,從第1行起,設(shè)第n次出現(xiàn)全行為1時(shí),1的個(gè)數(shù)為,則等于( 。

A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求直線的普通方程和曲線的直角坐標(biāo)方程;

2)若射線)與直線和曲線分別交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市的華為手機(jī)專賣店對(duì)該市市民使用華為手機(jī)的情況進(jìn)行調(diào)查.在使用華為手機(jī)的用戶中,隨機(jī)抽取100名,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻率分布直方圖如圖:

(1)根據(jù)頻率分布直方圖,分別求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)的估計(jì)值(均精確到個(gè)位);

(2)在抽取的這100名市民中,按年齡進(jìn)行分層抽樣,抽取20人參加華為手機(jī)宣傳活動(dòng),現(xiàn)從這20人中,隨機(jī)選取2人各贈(zèng)送一部華為手機(jī),求這2名市民年齡都在內(nèi)的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直三棱柱中的底面為等腰直角三角形,,點(diǎn)分別是邊,上動(dòng)點(diǎn),若直線平面,點(diǎn)為線段的中點(diǎn),則點(diǎn)的軌跡為  

A. 雙曲線的一支一部分 B. 圓弧一部分

C. 線段去掉一個(gè)端點(diǎn) D. 拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】針對(duì)“中學(xué)生追星問題”,某校團(tuán)委對(duì)“學(xué)生性別和中學(xué)生追星是否有關(guān)”作了一次調(diào)查,其中女生人數(shù)是男生人數(shù)的,男生追星的人數(shù)占男生人數(shù)的,女生追星的人數(shù)占女生人數(shù)的.若有的把握認(rèn)為是否追星和性別有關(guān),則男生至少有( )

參考數(shù)據(jù)及公式如下:

A. 12B. 11C. 10D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體的棱長(zhǎng)為2,,,分別是,,的中點(diǎn),則過且與平行的平面截正方體所得截面的面積為____和該截面所成角的正弦值為______

查看答案和解析>>

同步練習(xí)冊(cè)答案