10.已知C1在直角坐標(biāo)系下的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{{\sqrt{5}}}{5}t\\ y=\frac{{2\sqrt{5}}}{5}t-1\end{array}\right.(t為參數(shù))$,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,有曲線C2:ρ=2cosθ-4sinθ.
(Ⅰ)將C1的方程化為普通方程,并求出C2的直角坐標(biāo)方程;
(Ⅱ)求曲線C1和C2兩交點(diǎn)之間的距離.

分析 (Ⅰ)利用三種方程的互化方法,即可將C1的方程化為普通方程,并求出C2的直角坐標(biāo)方程;
(Ⅱ)求出圓心(1,-2)到直線的距離,即可求曲線C1和C2兩交點(diǎn)之間的距離.

解答 解:(Ⅰ)C1在直角坐標(biāo)系下的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{{\sqrt{5}}}{5}t\\ y=\frac{{2\sqrt{5}}}{5}t-1\end{array}\right.(t為參數(shù))$,消參后得C1為y-2x+1=0.
由ρ=2cosθ-4sinθ得ρ2=2ρcosθ-4ρsinθ.∴x2+y2=2x-4y,
∴C2的直角坐標(biāo)方程為(x-1)2+(y+2)2=5..…(5分)
(Ⅱ)∵圓心(1,-2)到直線的距離$d=\frac{{|{-2-2+1}|}}{{\sqrt{5}}}=\frac{3}{{\sqrt{5}}}$.
∴$|{AB}|=2\sqrt{{{(\sqrt{5})}^2}-{{(\frac{3}{{\sqrt{5}}})}^2}}=\frac{{8\sqrt{5}}}{5}$.…(10分)

點(diǎn)評(píng) 本題考查三種方程的互化,考查直線與圓的位置關(guān)系,考查點(diǎn)到直線的距離公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a5=6,則S9的值為( 。
A.27B.36C.45D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)集合A={x|x2≤7},Z為整數(shù)集,則集合A∩Z中元素的個(gè)數(shù)是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=ln(1+x)-x,g(x)=ln2(1+x)-$\frac{x^2}{1+x}$.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:g(x)≤0;
(3)若不等式${(1+\frac{1}{n})^{n+a}}$≤e對(duì)任意的n∈N*都成立(其中e是自然對(duì)數(shù)的底數(shù)).求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知拋物線C1:y2=4x的焦點(diǎn)F也是橢圓${C_2}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一個(gè)焦點(diǎn),C1與C2的公共弦長(zhǎng)為$2\sqrt{6}$,過(guò)點(diǎn)F的直線l與C1相交于A,B兩點(diǎn),與C2相交于C,D兩點(diǎn),且$\overrightarrow{AC}$與$\overrightarrow{BD}$同向.
(1)求C2的方程;
(2)若|AC|=|BD|,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知向量$\overrightarrow a$,$\overrightarrow b$的夾角為$\frac{π}{3}$,且$|{\overrightarrow b}$|=1,$|{\overrightarrow a-2\overrightarrow b}|=\sqrt{7}$,$|{\overrightarrow a}$|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的兩條漸進(jìn)線為l1、l2,且l1與x軸所成的夾角為30°,且雙曲線的焦距為$4\sqrt{2}$.
(1)求橢圓C的方程;
(2)過(guò)橢圓C的右焦點(diǎn)F作直線l,l與橢圓C相交于A、B,與圓O:x2+y2=a2相交于D、E兩點(diǎn),當(dāng)△OAB的面積最大時(shí),求弦DE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若f(x)=ax3+4x+5的圖象在(1,f(1))處的切線在x軸上的截距為-$\frac{3}{7}$.則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知雙曲線$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F1的直線與左支相交于A,B兩點(diǎn),如果|AF2|+|BF2|=2|AB|,則|AB|=$4\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案