分析 (1)由a≥2,分子有理化求得$\sqrt{a+1}$-$\sqrt{a}$=$\frac{1}{\sqrt{a+1}+\sqrt{a}}$,$\sqrt{a-1}$-$\sqrt{a-2}$=$\frac{1}{\sqrt{a-1}+\sqrt{a-2}}$,利用不等式的性質(zhì),即可得證;
(2)利用“1”代換,$\frac{1}{a}$+$\frac{1}$=(a+b)×($\frac{1}{a}$+$\frac{1}$),展開利用基本不等式的性質(zhì)可知求得則$\frac{1}{a}+\frac{1}>4$.
解答 證明:(1)由a≥2,$\sqrt{a+1}$-$\sqrt{a}$=$\frac{1}{\sqrt{a+1}+\sqrt{a}}$,
$\sqrt{a-1}$-$\sqrt{a-2}$=$\frac{1}{\sqrt{a-1}+\sqrt{a-2}}$,
$\sqrt{a}$>$\sqrt{a-2}$≥0,$\sqrt{a+1}$>$\sqrt{a-1}$>0,
兩式相加可得:$\sqrt{a}$+$\sqrt{a+1}$>$\sqrt{a-1}$+$\sqrt{a-2}$>0,
∴$\frac{1}{\sqrt{a+1}+\sqrt{a}}$<$\frac{1}{\sqrt{a-1}+\sqrt{a-2}}$,
∴$\sqrt{a+1}-\sqrt{a}<\sqrt{a-1}-\sqrt{a-2}$;
(2)$\frac{1}{a}$+$\frac{1}$=(a+b)×($\frac{1}{a}$+$\frac{1}$)=2+$\frac{a}$+$\frac{a}$>2+2$\sqrt{\frac{a}•\frac{a}}$=4,
∴$\frac{1}{a}+\frac{1}>4$.
點評 本題考查不等式的證明,考查不等式的性質(zhì)及基本不等式的應(yīng)用,考查推理能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{8}$ | B. | $\frac{{\sqrt{2}}}{6}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2012 | B. | 2012 | C. | 4024 | D. | 4022 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com