3.已知曲線${C_n}:y=n{x^2}$,點Pn(xn,yn)(xn>0,yn>0)是曲線Cn上的點(n=1,2,…),曲線Cn在點Pn處的切線是ln,ln與y軸相交于點Qn.若原點O(0,0)到切線ln的距離與線段PnQn的長度之比取得最大值,則點Pn的坐標(biāo)為$(\frac{1}{2n},\frac{1}{4n})$.

分析 求導(dǎo),令x=xn,求得點P的切線方程2nxn•x-n•${x}_{n}^{2}$=0,利用點到直線的距離公式求得原點O(0,0)到切線ln的距離d=$\frac{丨-n{x}_{n}^{2}丨}{\sqrt{(2n{x}_{n})^{2}+1}}$=$\frac{n{x}_{n}^{2}}{\sqrt{4{n}^{2}{x}_{n}^{2}+1}}$,丨PnQn丨=$\sqrt{{x}_{n}^{2}+(2n{x}_{n}^{2})^{2}}$,$\fracye4tweb{丨{P}_{n}{Q}_{n}丨}$=$\frac{n丨{x}_{n}丨}{1+4{n}^{2}{x}_{n}^{2}}$≤$\frac{n丨{x}_{n}丨}{2•1•丨2n{x}_{n}丨}$=$\frac{1}{4}$,即可求得點Pn的坐標(biāo).

解答 解:由y=nx2,求導(dǎo),y′=2nx,
∴y′${丨}_{x={x}_{n}}$=2nxn
∴切線ln的方程為y-n•${x}_{n}^{2}$=2nxn(x-xn),即2nxn•x-n•${x}_{n}^{2}$=0,
令x=0,得y=-n${x}_{n}^{2}$,
∴點Qn坐標(biāo)為(0,-n•${x}_{n}^{2}$);
原點O(0,0)到切線ln的距離d=$\frac{丨-n{x}_{n}^{2}丨}{\sqrt{(2n{x}_{n})^{2}+1}}$=$\frac{n{x}_{n}^{2}}{\sqrt{4{n}^{2}{x}_{n}^{2}+1}}$,
丨PnQn丨=$\sqrt{{x}_{n}^{2}+(2n{x}_{n}^{2})^{2}}$,
∴$\fraccxz4o6s{丨{P}_{n}{Q}_{n}丨}$=$\frac{n丨{x}_{n}丨}{1+4{n}^{2}{x}_{n}^{2}}$≤$\frac{n丨{x}_{n}丨}{2•1•丨2n{x}_{n}丨}$=$\frac{1}{4}$,
當(dāng)且僅當(dāng)1=4n2${x}_{n}^{2}$,即${x}_{n}^{2}$=$\frac{1}{4{n}^{2}}$(xn>0)時,等號成立,
此時xn=$\frac{1}{2n}$,
∴點Pn的坐標(biāo)為$(\frac{1}{2n},\frac{1}{4n})$.
故答案為:$(\frac{1}{2n},\frac{1}{4n})$.

點評 本題考查導(dǎo)數(shù)的運算,考查利用導(dǎo)數(shù)求點的切線方程,點到直線的距離公式,兩點之間的距離公式及基本不等式的綜合應(yīng)用,考查轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:?x∈R,2x+$\frac{1}{2^x}$>2;命題$q:?x∈[0,\frac{π}{2}]$,使sinx+cosx=$\frac{1}{2}$,則下列命題中為真命題的是( 。
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系中,O是坐標(biāo)原點,拋物線E的方程為y2=4x.M(1,-3),N(5,1),直線MN與拋物線相交于A,B兩點,求∠AOB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.證明下列命題:
(1)若實數(shù)a≥2,則$\sqrt{a+1}-\sqrt{a}<\sqrt{a-1}-\sqrt{a-2}$;
(2)若a,b為兩個不相等的正數(shù),且a+b=1,則$\frac{1}{a}+\frac{1}>4$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若關(guān)于x的方程x3-3x-m=0在[0,2]上有根,則實數(shù)m的取值范圍是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若由一個2×2 列聯(lián)表中的數(shù)據(jù)計算得K2的觀測值k≈4.013,那么在犯錯的概率不超過0.05的前提下,認(rèn)為兩個變量之間有關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知tanx=2,求下列各式的值:
(1)$\frac{4sinx-2cosx}{3cosx+3sinx}$;
(2)$\frac{2}{3}$sin2x+$\frac{1}{4}$cos2x;
(3)sinxcosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.過點P(1,1)與雙曲線x2-y2=1有且只有一個交點的直線條數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=3,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則|$\overrightarrow{a}$+$\overrightarrow$|等于( 。
A.$\sqrt{13}$B.$\sqrt{15}$C.$\sqrt{19}$D.$\sqrt{37}$

查看答案和解析>>

同步練習(xí)冊答案