14.在空間直角坐標(biāo)系O-xyz中,點(diǎn)(1,2,1)關(guān)于平面yOz對(duì)稱(chēng)點(diǎn)的坐標(biāo)為( 。
A.(-1,-2,1)B.(-1,2,1)C.(1,-2,-1)D.(1,2,-1)

分析 利用關(guān)于平面yOz對(duì)稱(chēng)點(diǎn)的坐標(biāo)性質(zhì)即可得出.

解答 解:點(diǎn)(1,2,1)關(guān)于平面yOz對(duì)稱(chēng)點(diǎn)的坐標(biāo)為點(diǎn)(-1,2,1).
故選:B.

點(diǎn)評(píng) 本題考查了空間坐標(biāo)系的對(duì)稱(chēng)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知等差數(shù)列{an}中a1=19,a4=13,Sn為{an}的前n項(xiàng)和.
(Ⅰ)求通項(xiàng)an及Sn;
(Ⅱ)令cn=bn-an,且數(shù)列{cn}是前三項(xiàng)為x,3x+3,6x+6的等比數(shù)列,求bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.過(guò)點(diǎn)P(3,2)的直線l與x軸和y軸正半軸分別交于A、B.
(1)若P為AB的中點(diǎn)時(shí),求l的方程;
(2)若|PA|•|PB|最小時(shí),求l的方程;
(3)若△AOB的面積S最小時(shí),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知數(shù)列{an}是等比數(shù)列,若a3a6a9=-8,則$\frac{4}{{{a_1}{a_7}}}$+$\frac{8}{{{a_2}{a_{10}}}}$+$\frac{16}{{{a_4}{a_{12}}}}$的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=$\frac{1}{2}$Sn(n=1,2,3,…).則數(shù)列{an}的通項(xiàng)公式為an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{1}{2}×(\frac{3}{2})^{n-2},n≥2}\end{array}\right.$.n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若圓C1:(x-1)2+(y-1)2=4與圓C2:x2+y2-8x-10y+m+6=0外切,則m=( 。
A.22B.18C.26D.-24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在等差數(shù)列{an}中,an>0,且a1+a2+a3+…+a10=30,則a5a6的最大值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(3,-4),將線段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)$\frac{π}{2}$至OB,則點(diǎn)B的縱坐標(biāo)為( 。
A.-4B.-3C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:解答題

根據(jù)統(tǒng)計(jì)資料,某工藝品廠的日產(chǎn)量最多不超過(guò)20件根據(jù)統(tǒng)計(jì)資料,每日產(chǎn)品廢品率與日產(chǎn)量(件)之間近似地滿足關(guān)系式(日產(chǎn)品廢品率=×100%) .已知每生產(chǎn)一件正品可贏利2千元,而生產(chǎn)一件廢品則虧損1千元.(該車(chē)間的日利潤(rùn)日正品贏利額日廢品虧損額)

(1)將該車(chē)間日利潤(rùn)(千元)表示為日產(chǎn)量(件)的函數(shù);

(2)當(dāng)該車(chē)間的日產(chǎn)量為多少件時(shí),日利潤(rùn)最大?最大日利潤(rùn)是幾千元?

查看答案和解析>>

同步練習(xí)冊(cè)答案