(本題滿分14分,第(1)小題7分,第(2)小題7分)

某地發(fā)生特大地震和海嘯,使當?shù)氐淖詠硭艿搅宋廴荆巢块T對水質(zhì)檢測后,決定往水中投放一種藥劑來凈化水質(zhì)。已知每投放質(zhì)量為的藥劑后,經(jīng)過天該藥劑在水中釋放的濃度(毫克/升) 滿足,其中,當藥劑在水中釋放的濃度不低于 (毫克/升)時稱為有效凈化;當藥劑在水中釋放的濃度不低于 (毫克/升) 且不高于10(毫克/升)時稱為最佳凈化。

    (1)如果投放的藥劑質(zhì)量為,試問自來水達到有效凈化一共可持續(xù)幾天?

    (2)如果投放的藥劑質(zhì)量為,為了使在7天之內(nèi)(從投放藥劑算起包括7天)的自來水達到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量的值。

 

【答案】

解:(1)因為,所以   ……………… 4分

顯然符合題意…………… 5分

,…………… 6分

綜上…………… 7分

所以自來水達到有效凈化一共可持續(xù)8天…………………8分

(2)由= 知………10分

在區(qū)間上單調(diào)遞增,即

在區(qū)間上單調(diào)遞減,即

綜上,………14分

為使恒成立,只要即可,即

所以為了使在7天之內(nèi)的自來水達到最佳凈化,投放的藥劑質(zhì)量應(yīng)該為!16分

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分,第(1)小題6分,第(2)小題8分)

四棱錐P-ABCD中,PD⊥平面ABCD,PA與平面ABCD所成的角為60,在四邊形ABCD中,∠ADC=∠DAB=90,AB=4,CD=1,AD=2.

(1)求四棱錐P-ABCD的體積;

(2)求異面直線PA與BC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分,第(1)小題4分,第(2)小題4分,第(2)小題6分)

設(shè)數(shù)列中,若,則稱數(shù)列為“凸數(shù)列”。

(1)設(shè)數(shù)列為“凸數(shù)列”,若,試寫出該數(shù)列的前6項,并求出該6項之和;

(2)在“凸數(shù)列”中,求證:

(3)設(shè),若數(shù)列為“凸數(shù)列”,求數(shù)列前項和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分,第1小題6分,第2小題8分)

已知函數(shù),x∈R,且f(x)的最大值為1.

(1) 求m的值,并求f(x)的單調(diào)遞增區(qū)間;

(2) 在△ABC中,角AB、C的對邊a、b、c,若,且,試判斷△ABC的形狀.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年上海市高三上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本題滿分14分,第1小題5分,第2小題9分)

    一校辦服裝廠花費2萬元購買某品牌運動裝的生產(chǎn)與銷售權(quán),根據(jù)以往經(jīng)驗,每生產(chǎn)1百套這種品牌運動裝的成本為1萬元,每生產(chǎn)x(百套)的銷售額R(x)(萬元)滿足:

   

   (1)該服裝廠生產(chǎn)750套此種品牌運動裝可獲得利潤多少萬元?

   (2)該服裝廠生產(chǎn)多少套此種品牌運動裝利潤最大?此時,利潤是多少萬元?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市長寧區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題

(本題滿分14分,第(1)小題6分,第(2)小題8分)

設(shè)函數(shù),若不等式的解集為

(1)求的值;

(2)若函數(shù)上的最小值為1,求實數(shù)的值。

 

查看答案和解析>>

同步練習(xí)冊答案