17.已知一個幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.60-12πB.60-6πC.72-12πD.72-6π

分析 根據(jù)三視圖知該幾何體是直四棱柱,挖去一個半圓柱體,
結(jié)合圖中數(shù)據(jù)求出組合體的體積.

解答 解:根據(jù)三視圖知:該幾何體是直四棱柱,挖去一個半圓柱體,
且四棱柱的底面是等腰梯形,高為3;
所以該組合體的體積為:
V=$\frac{1}{2}$×(4+8)×4×3-$\frac{1}{2}$π×22×3=72-6π.
故選:D.

點(diǎn)評 本題考查了利用幾何體三視圖求體積的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)p:x2-x<1,$q:{log_2}({x^2}-x)<0$,則非p是非q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ax2+bx-c-lnx(x>0)在x=1處取極值,其中a,b為常數(shù).
(1)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在x=1處取極值-1-c,且不等式f(x)≥-2c2恒成立,求實(shí)數(shù)c的取值范圍;
(3)若a>0,且函數(shù)f(x)有兩個不相等的零點(diǎn)x1,x2,證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)P(2,1),且離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l與x軸不垂直,與橢圓相交于不同于P的兩點(diǎn)A,B,直線PA,PB分別交y軸于M,N,若$\overrightarrow{OM}$=$\overrightarrow{NO}$(其中O為坐標(biāo)原點(diǎn)),直線l是否過定點(diǎn)?若不過定點(diǎn),說明理由,若過定點(diǎn),求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,高為1的等腰梯形ABCD中,AM=CD=$\frac{1}{3}$AB=1,M為AB的三等分點(diǎn),現(xiàn)將△AMD沿MD折起,使平面AMD⊥平面MBCD,連接AB、AC.
(Ⅰ)在AB邊上是否存在點(diǎn)P,使AD∥平面MPC?
(Ⅱ)當(dāng)點(diǎn)P為AB邊中點(diǎn)時,求點(diǎn)B到平面MPC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知過點(diǎn)P(a,0)的直線l的參數(shù)方程是$\left\{\begin{array}{l}x=\frac{{\sqrt{3}}}{2}t+a\\ y=\frac{1}{2}t\end{array}\right.$(t為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=4cosθ.
(Ⅰ)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),試問是否存在實(shí)數(shù)a,使得$|{\overrightarrow{PA}+\overrightarrow{PB}}|=6$且$|{\overrightarrow{AB}}|=4$?若存在,求出實(shí)數(shù)a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若直線l過點(diǎn)A(2,3)且點(diǎn)B(-3,2)到直線l的距離最大,則l的方程為5x+y-13=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.一個幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長為4的兩個全等的等腰直角三角形,俯視圖為一個矩形與它的一條對角線.
(1)用斜二測畫法畫出這個幾何體的直觀圖;
(2)求該幾何體的表面積;
(3)在幾何體直圖中,在線段PB上是否得在點(diǎn)M,使得PB⊥平面MAC,若得在,求線段PM的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若f(x)是定義R在上的奇函數(shù),當(dāng)x<0時f(x)=cos3x+sin2x,則當(dāng)x>0時,f(x)=-cos3x+sin2x.

查看答案和解析>>

同步練習(xí)冊答案