【題目】已知圓心在軸非負(fù)半軸上,半徑為2的圓C與直線相切.

(1)求圓C的方程;

(2)設(shè)不過原點O的直線l與圓O:x2+y2=4相交于不同的兩點A,B.①求△OAB的面積的最大值;②在圓C上,是否存在點M(m,n),使得直線l的方程為mx+ny=1,且此時△OAB的面積恰好取到①中的最大值?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

【答案】(1) ;(2)① 2 ② .

【解析】

(1)設(shè)出圓心坐標(biāo),根據(jù)點到直線距離求得圓心,進(jìn)而得到圓的方程。

(2)設(shè)圓心到直線AB的距離,根據(jù)三角形面積公式和基本不等式即可求得面積的最大值;根據(jù)點M在圓上,及點到直線距離等于半徑即可求得M的坐標(biāo)。

(1)設(shè)圓心是(x0,0)(),它到直線的距離是

解得(舍去)

∴所求圓C的方程是.

(2)①設(shè)圓心O到直線的距離為

則△OAB的面積

當(dāng)且僅當(dāng)時等號成立

∴△OAB的最大面積為2.

②由題得

∴存在滿足要求的點M,其坐標(biāo)是,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果執(zhí)行程序框圖,且輸入n=6,m=4,則輸出的p=(  )

A.240
B.120
C.720
D.360

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1 , 則下列說法不正確的是(
A.若點P在直線BC1上運(yùn)動時,三棱錐A﹣D1PC的體積不變
B.若點P是平面A1B1C1D1上到點D和C1距離相等的點,則P點的軌跡是過D1點的直線
C.若點P在直線BC1上運(yùn)動時,直線AP與平面ACD1所成角的大小不變
D.若點P在直線BC1上運(yùn)動時,二面角P﹣AD1﹣C的大小不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記min{x,y}= 設(shè)f(x)=min{x2 , x3},則(
A.存在t>0,|f(t)+f(﹣t)|>f(t)﹣f(﹣t)
B.存在t>0,|f(t)﹣f(﹣t)|>f(t)﹣f(﹣t)
C.存在t>0,|f(1+t)+f(1﹣t)|>f(1+t)+f(1﹣t)
D.存在t>0,|f(1+t)﹣f(1﹣t)|>f(1+t)﹣f(1﹣t)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(﹣2,0),B(0,1)在橢圓C: (a>b>0)上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)P是線段AB上的點,直線y= x+m(m≥0)交橢圓C于M、N兩點,若△MNP是斜邊長為 的直角三角形,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|﹣1≤x≤2},B={x|x2﹣4x≤0},則A∪B= , A∩(RB)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,a、b、c分別是角A、B、C的對邊,若A滿足2cos2A+cos(2A+ )=﹣
(Ⅰ)求A的值;
(Ⅱ)若c=3,△ABC的面積為3 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校某文具商店經(jīng)營某種文具,商店每銷售一件該文具可獲利3元,若供大于求則削價處理,每處理一件文具虧損1元;若供不應(yīng)求,則可以從外部調(diào)劑供應(yīng),此時每件文具僅獲利2元.為了了解市場需求的情況,經(jīng)銷商統(tǒng)計了去年一年(52周)的銷售情況.

銷售量(件)

10

11

12

13

14

15

16

周數(shù)

2

4

8

13

13

8

4

以去年每周的銷售量的頻率為今年每周市場需求量的概率.
(1)要使進(jìn)貨量不超過市場需求量的概率大于0.5,問進(jìn)貨量的最大值是多少?
(2)如果今年的周進(jìn)貨量為14,寫出周利潤Y的分布列;
(3)如果以周利潤的期望值為考慮問題的依據(jù),今年的周進(jìn)貨量定為多少合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的S的值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案