3.已知a>0,則不等式|x|>a的解集是{x|x>a 或x<-a},不等式|x|<a的解集是{x|-a<x<a }.

分析 由條件解絕對(duì)值不等式,求得不等式的解集.

解答 解:a>0,則由不等式|x|>a,可得x>a 或x<-a,故它的解集是{x|x>a 或x<-a};
由不等式|x|<a,可得-a<x<a,故它的解集為 {x|-a<x<a },
故答案為:{x|x>a 或x<-a};{x|-a<x<a }.

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.計(jì)算 ${\frac{5(4+i)}{i(2+i)}^2}$1-38i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=(ax-5)cosx-asinx(0≤x≤π),其中a為正實(shí)數(shù).
(Ⅰ)當(dāng)a=1時(shí),求f(x)在[0,π]上的零點(diǎn)個(gè)數(shù).
(Ⅱ)對(duì)于定義域內(nèi)的任意x1,x2,將|f(x1)-f(x2)|的最大值記作g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.證明函數(shù)f(x)=$\frac{2-x}{x+2}$在(-2,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(2,-3,1),$\overrightarrow$=(2,0,3),$\overrightarrow{c}$=(0,0,2),則$\overrightarrow{a}$•($\overrightarrow$+$\overrightarrow{c}$)=( 。
A.8B.9C.13D.$\sqrt{61}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知定義在R上的可導(dǎo)函數(shù)為f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(x+3)為偶函數(shù),f(6)=1,則不等式f(x)<ex的解集為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.現(xiàn)有一塊正三棱錐形石料,其三條側(cè)棱兩兩互相垂直,且側(cè)棱長(zhǎng)為1m,若要將這塊石料打磨成一個(gè)石球,則所得石球的最大半徑為$\frac{3-\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.f(x)=$\frac{x}{x-a}$(x≠a),若a>0,且函數(shù)f(x)在區(qū)間(1,+∞)內(nèi)單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若$\frac{2sinα-cosα}{sinα+2cosα}$=$\frac{3}{4}$,則tanα的值為( 。
A.1B.2C.-1D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案