【題目】如果函數(shù)f(x)=x3-x滿足:對于任意的x1,x2∈[0,2],都有|f(x1)-f(x2)|≤a2恒成立,則a的取值范圍是( )
A. [-, ]
B. [-, ]
C. (-∞,- ]∪[,+∞)
D. (-∞,- ]∪[,+∞)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(MD),有x+l∈D,且f(x+l)f(x),則稱f(x)為M上的l高調(diào)函數(shù).現(xiàn)給出下列命題:①函數(shù)f(x)=2﹣x為R上的1高調(diào)函數(shù);②函數(shù)f(x)=sin2x為R上的π高調(diào)函數(shù);③如果定義域為[﹣1,+∞)的函數(shù)f(x)=x2為[﹣1,+∞)上m高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞);④函數(shù)f(x)=lg(|x﹣2|+1)為[1,+∞)上的2高調(diào)函數(shù).其中真命題的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),若不等式的解集為(1,4),且方程f(x)=x有兩個相等的實數(shù)根。
(1)求f(x)的解析式;
(2)若不等式f(x)>mx在上恒成立,求實數(shù)m的取值范圍;
(3)解不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題10分) 從3名男生和名女生中任選2人參加比賽。
①求所選2人都是男生的概率;
②求所選2人恰有1名女生的概率;
③求所選2人中至少有1名女生的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是直角梯形,平面,,,,點為棱的中點.
(1)證明:;
(2)若點為棱上一點,且與平面所成角的正弦值是,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為更好地落實農(nóng)民工工資保證金制度,南方某市勞動保障部門調(diào)查了年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工月工資的中位數(shù)為百元(假設(shè)這名農(nóng)民工的月工資均在(百元)內(nèi))且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:
(Ⅰ)求,的值;
(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名,則能否在犯錯誤的概率不超過的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?
參考公式及數(shù)據(jù):,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1,且E,F分別是BC,B1C1中點.
(1)求證:A1B∥平面AEC1;
(2)求直線AF與平面AEC1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】1927年德國漢堡大學(xué)的學(xué)生考拉茲提出一個猜想:對于每一個正整數(shù),如果它是奇數(shù),就把它乘以3再加1,如果它是偶數(shù),就把它除以2,這樣循環(huán),最終結(jié)果都能得到1.如圖是為了驗證考拉茲猜想而設(shè)計的一個程序框圖,則①處應(yīng)填寫的條件及輸出的結(jié)果i分別為( )
A.a是偶數(shù)?;5B.a是偶數(shù)?;6
C.a是奇數(shù)?;5D.a是奇數(shù)?;6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)證明:當(dāng)時,;
(Ⅱ)設(shè)當(dāng)時,,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com