分析 令f(x)=t,函數(shù)F(x)=f[f(x)]-2f(x)-$\frac{3}{2}$的零點(diǎn)個(gè)數(shù)問題?f(t)-2t-$\frac{3}{2}$=0的根的個(gè)數(shù)問題.結(jié)合圖象可得f(t)-2t-$\frac{3}{2}$=0的根t1<0,t2∈(1,2).f(x)=t1無解,f(x)=t2有3解,解得得到函數(shù)F(x)=f[f(x)]-2f(x)-$\frac{3}{2}$的零點(diǎn)個(gè)數(shù)
解答 解:令f(x)=t,函數(shù)F(x)=f[f(x)]-2f(x)-$\frac{3}{2}$的零點(diǎn)個(gè)數(shù)問題?f(t)-2t-$\frac{3}{2}$=0的根的個(gè)數(shù)問題.
即y=f(t),y=2t+$\frac{3}{2}$的圖象如圖(1),結(jié)合圖象可得f(t)-2t-$\frac{3}{2}$=0的根t1<0,t2∈(1,2).
f(x)=t1無解,f(x)=t2有3解,
綜上,函數(shù)F(x)=f[f(x)]-2f(x)-$\frac{3}{2}$的零點(diǎn)個(gè)數(shù)是3.
故答案為:3
點(diǎn)評(píng) 本題考查了復(fù)合函數(shù)零點(diǎn)問題,解題的關(guān)鍵是合理利用換元思想求解,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | i | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 雙曲線 | B. | 橢圓 | C. | 圓 | D. | 直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{2}{3}$,1) | B. | (1,+∞) | C. | ($\frac{2}{3}$,+∞) | D. | [1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com