微信群數(shù)量 | 頻數(shù) | 頻率 |
0至5個(gè) | 0 | 0 |
6至10個(gè) | 30 | 0.3 |
11至15個(gè) | 30 | 0.3 |
16至20個(gè) | a | c |
20個(gè)以上 | 5 | b |
合計(jì) | 100 | 1 |
分析 (Ⅰ)由頻率分布列的性質(zhì)及$頻率=\frac{頻數(shù)}{總數(shù)}$,能求出a,b,c的值.
(Ⅱ)記“2人中恰有1人微信群個(gè)數(shù)超過15個(gè)”為事件A,利用等可能事件概率計(jì)算公式能求出2人中恰有1人微信群個(gè)數(shù)超過15個(gè)的概率.
(Ⅲ)依題意可知,微信群個(gè)數(shù)超過15個(gè)的概率為$P=\frac{2}{5}$.X的所有可能取值0,1,2,3,由此能求出X的分布列和數(shù)學(xué)期望EX.
解答 (本小題共13分)
解:(Ⅰ)由已知得:0+30+30+a+5=100,
解得a=35,
∴$b=\frac{5}{100}=\frac{1}{20}$,$c=\frac{35}{100}=\frac{7}{20}$.…(3分)
(Ⅱ)記“2人中恰有1人微信群個(gè)數(shù)超過15個(gè)”為事件A,
則$P(A)=\frac{{C_{40}^1C_{60}^1}}{{C_{100}^2}}=\frac{16}{33}$.
所以,2人中恰有1人微信群個(gè)數(shù)超過15個(gè)的概率為$\frac{16}{33}$. …(7分)
(Ⅲ)依題意可知,微信群個(gè)數(shù)超過15個(gè)的概率為$P=\frac{2}{5}$.
X的所有可能取值0,1,2,3.…(8分)
則$P({X=0})=C_3^0{(\frac{2}{5})^0}{(1-\frac{2}{5})^3}=\frac{27}{125}$,
$P({X=1})=C_3^1{(\frac{2}{5})^1}{(1-\frac{2}{5})^2}=\frac{54}{125}$,
$P({X=2})=C_3^2{(\frac{2}{5})^2}{(1-\frac{2}{5})^1}=\frac{36}{125}$,
$P({X=3})=C_3^3{(\frac{2}{5})^3}{(1-\frac{2}{5})^0}=\frac{8}{125}$.
其分布列如下:
X | 0 | 1 | 2 | 3 |
P | $\frac{27}{125}$ | $\frac{54}{125}$ | $\frac{36}{125}$ | $\frac{8}{125}$ |
點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意排列組合知識(shí)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $\frac{8}{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com