【題目】如圖,在三棱錐P-ABC中,平面平面ABC,.

1)若,求證:平面平面PBC;

2)若PA與平面ABC所成的角為,求二面角C-PB-A的余弦值.

【答案】1)見解析 2

【解析】

(1)利用面面垂直的性質(zhì)定理證明平面,由此即可證明平面平面;

(2)根據(jù)條件建立空間直角坐標(biāo)系,求解出平面、平面的法向量,利用法向量夾角的余弦值求解出二面角的余弦值.

解:(1)證明:因?yàn)槠矫?/span>平面ABC,平面平面,平面ABC,

所以平面PAC,由平面PAC,所以,

又因?yàn)?/span>,所以平面PBC

因?yàn)?/span>平面PAB,所以平面平面PBC

2)過(guò)P,因?yàn)槠矫?/span>平面ABC,

所以平面ABC,所以,

不妨設(shè),所以,

C為原點(diǎn),分別以CA,CB所在的直線為xy軸,以過(guò)C點(diǎn)且平行于PH的直線為z軸,

建立空間直角坐標(biāo)系如圖所示,

,

設(shè)為面PAB的一個(gè)法向量,

則有,即,令,可得,

設(shè)為面PBC的一個(gè)法向量,

則有,即,令,可得,

所以

所以二面角C-PB-A的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,(其中常數(shù)).

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)若函數(shù)有兩個(gè)零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】條形圖給出的是2017年全年及2018年全年全國(guó)居民人均可支配收入的平均數(shù)與中位數(shù),餅圖給出的是2018年全年全國(guó)居民人均消費(fèi)及其構(gòu)成,現(xiàn)有如下說(shuō)法:

①2018年全年全國(guó)居民人均可支配收入的平均數(shù)的增長(zhǎng)率低于2017年;

②2018年全年全國(guó)居民人均可支配收入的中位數(shù)約是平均數(shù)的;

③2018年全年全國(guó)居民衣(衣著)食(食品煙酒)。ň幼。┬校ń煌ㄍㄐ牛┑闹С龀^(guò)人均消費(fèi)的.

則上述說(shuō)法中,正確的個(gè)數(shù)是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓 ()的左、右焦點(diǎn)分別為,過(guò)的直線交橢圓于兩點(diǎn),若橢圓的離心率為的周長(zhǎng)為.

(1)求橢圓的方程;

(2)設(shè)不經(jīng)過(guò)橢圓的中心而平行于弦的直線交橢圓于點(diǎn),設(shè)弦的中點(diǎn)分別為,證明:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,準(zhǔn)線為l,過(guò)F的直線與E交于A,B兩點(diǎn),C,D分別為ABl上的射影,且,MAB中點(diǎn),則下列結(jié)論正確的是(

A.B.為等腰直角三角形

C.直線AB的斜率為D.的面積為4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線過(guò)點(diǎn).

1)求拋物線的方程;

2)設(shè)軸上一點(diǎn),為拋物線上任意一點(diǎn),求的最小值;

3)過(guò)拋物線的焦點(diǎn),作相互垂直的兩條弦,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中,角所對(duì)的邊分別是,的面積為,且,.

(1)求的值;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的四個(gè)頂點(diǎn)組成的四邊形的面積為,且經(jīng)過(guò)點(diǎn)

1求橢圓的方程;

2若橢圓的下頂點(diǎn)為,如圖所示,點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn),過(guò)橢圓的右焦點(diǎn)的直線垂直于,且與交于兩點(diǎn),與交于點(diǎn),四邊形的面積分別為的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的六面體中,四邊形是邊長(zhǎng)為的正方形,四邊形是梯形,,平面平面,.

1)在圖中作出平面 與平面的交線,并寫出作圖步驟,但不要求證明;

2)求證:平面;

3)求平面與平面所成角的余弦值

查看答案和解析>>

同步練習(xí)冊(cè)答案