【題目】如圖,在三棱錐P-ABC中,平面平面ABC,,.
(1)若,求證:平面平面PBC;
(2)若PA與平面ABC所成的角為,求二面角C-PB-A的余弦值.
【答案】(1)見解析 (2)
【解析】
(1)利用面面垂直的性質(zhì)定理證明平面,由此即可證明平面平面;
(2)根據(jù)條件建立空間直角坐標(biāo)系,求解出平面、平面的法向量,利用法向量夾角的余弦值求解出二面角的余弦值.
解:(1)證明:因?yàn)槠矫?/span>平面ABC,平面平面,平面ABC,,
所以平面PAC,由平面PAC,所以,
又因?yàn)?/span>,所以平面PBC,
因?yàn)?/span>平面PAB,所以平面平面PBC;
(2)過(guò)P作,因?yàn)槠矫?/span>平面ABC,
所以平面ABC,所以,
不妨設(shè),所以,
以C為原點(diǎn),分別以CA,CB所在的直線為x,y軸,以過(guò)C點(diǎn)且平行于PH的直線為z軸,
建立空間直角坐標(biāo)系如圖所示,
則,
,,
設(shè)為面PAB的一個(gè)法向量,
則有,即,令,可得,
設(shè)為面PBC的一個(gè)法向量,
則有,即,令,可得,
所以,
所以二面角C-PB-A的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,(其中常數(shù)).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)有兩個(gè)零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】條形圖給出的是2017年全年及2018年全年全國(guó)居民人均可支配收入的平均數(shù)與中位數(shù),餅圖給出的是2018年全年全國(guó)居民人均消費(fèi)及其構(gòu)成,現(xiàn)有如下說(shuō)法:
①2018年全年全國(guó)居民人均可支配收入的平均數(shù)的增長(zhǎng)率低于2017年;
②2018年全年全國(guó)居民人均可支配收入的中位數(shù)約是平均數(shù)的;
③2018年全年全國(guó)居民衣(衣著)食(食品煙酒)。ň幼。┬校ń煌ㄍㄐ牛┑闹С龀^(guò)人均消費(fèi)的.
則上述說(shuō)法中,正確的個(gè)數(shù)是( )
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓 ()的左、右焦點(diǎn)分別為,過(guò)的直線交橢圓于,兩點(diǎn),若橢圓的離心率為,的周長(zhǎng)為.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過(guò)橢圓的中心而平行于弦的直線交橢圓于點(diǎn),,設(shè)弦,的中點(diǎn)分別為,證明:三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,準(zhǔn)線為l,過(guò)F的直線與E交于A,B兩點(diǎn),C,D分別為A,B在l上的射影,且,M為AB中點(diǎn),則下列結(jié)論正確的是( )
A.B.為等腰直角三角形
C.直線AB的斜率為D.的面積為4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線:過(guò)點(diǎn).
(1)求拋物線的方程;
(2)設(shè)為軸上一點(diǎn),為拋物線上任意一點(diǎn),求的最小值;
(3)過(guò)拋物線的焦點(diǎn),作相互垂直的兩條弦和,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的四個(gè)頂點(diǎn)組成的四邊形的面積為,且經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)若橢圓的下頂點(diǎn)為,如圖所示,點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn),過(guò)橢圓的右焦點(diǎn)的直線垂直于,且與交于兩點(diǎn),與交于點(diǎn),四邊形和的面積分別為.求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的六面體中,四邊形是邊長(zhǎng)為的正方形,四邊形是梯形,,平面平面,,.
(1)在圖中作出平面 與平面的交線,并寫出作圖步驟,但不要求證明;
(2)求證:平面;
(3)求平面與平面所成角的余弦值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com