19.在數(shù)列{an}中,a1=2,a2=8,對所有正整數(shù)n均有an+2+an=an+1,則$\sum_{n=1}^{2017}$an=2.

分析 由遞推公式分別求出數(shù)列的前8項(xiàng),由此能求出$\sum_{n-1}^{2017}$an

解答 解:∵在數(shù)列{an}中,a1=2,a2=8,對所有正整數(shù)n均有an+2+an=an+1,
∴a3=a2-a1=8-2=6,
a4=a3-a2=6-8=-2,
a5=a4-a3=-2-6=-8,
a6=a8-a4=-8+2=-6,
a7=a6-a5=-6+8=2,
a8=a7-a6=2+6=8,
∴數(shù)列{an}是以6為周期的周期數(shù)列,
∴$\sum_{n=1}^{2017}$an=336×(2+8+6-2-8-6)+a1=a1=2.
故答案為:2.

點(diǎn)評 本題考查數(shù)列的前2017項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意數(shù)列的周期性的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)Sn=2+24+27+210+…+23n+10(n∈N+),則Sn=( 。
A.$\frac{2}{7}$(8n-1)B.$\frac{2}{7}$(8n+1-1)C.$\frac{2}{7}$(8n+3-1)D.$\frac{2}{7}$(8n+4-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,設(shè)P是圓x2+y2=6上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為線段PD上一點(diǎn),且$|{DP}|=\sqrt{2}|{DM}|$.
(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(2)直線$x+y-\sqrt{3}=0$與曲線C相交于E、G兩點(diǎn),F(xiàn)、H為曲線C上兩點(diǎn),若四邊形EFGH對角線相互垂直,求SEFGH的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\left\{\begin{array}{l}\frac{2}{x},x≥2\\{(x-1)^3},x<2\end{array}\right.$,若關(guān)于x的方程f(x)+k=0有兩個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是(  )
A.(0,1)B.[0,1]C.(-1,0)D.[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{2}=1$的左、右焦點(diǎn)為F1、F2,點(diǎn)F1關(guān)于直線y=-x的對稱點(diǎn)P在橢圓上,則△PF1F2的周長為4+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)隨機(jī)變量ξ的分布列為如表所表示,則b等于(  )
ξ0123
P0.10.4b0.1
A.0.1B.0.2C.0.3D.0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.拋物線x2=8y的焦點(diǎn)坐標(biāo)是( 。
A.(0,$\frac{1}{32}$)B.($\frac{1}{32}$,0)C.(2,0)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,角A,B,C的對邊分別為a,b,c,∠A,∠B,∠C的大小成等差數(shù)列,且a=1,$b=\sqrt{3}$.則∠A的大小為( 。
A.$\frac{π}{6}$或$\frac{5π}{6}$B.$\frac{π}{3}$或$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知a,b,c為△ABC的內(nèi)角A,B,C的對邊,滿足$\frac{sinB+sinC}{sinA}$=$\frac{2-cosB-cosC}{cosA}$,函數(shù)f(x)=sinωx(ω>0)在區(qū)間[0,$\frac{π}{3}$]上單調(diào)遞增,在區(qū)間[$\frac{π}{3}$,π]上單調(diào)遞減.
(1)證明:b+c=2a;
(2)若f($\frac{π}{9}$)=cos A,試判斷△ABC的形狀.

查看答案和解析>>

同步練習(xí)冊答案